
A Framework for RDF Data
Exploration and Conversion

Master Thesis

Gaurav Singha Roy
Riemenschneiderstr. 2, 53117 Bonn

s6gasing@uni-bonn.de
Matriculation number 2539517

Bonn, 12th January, 2015

Rheinische Friedrich-Wilhelms-Universität Bonn
Informatik – Enterprise Information Systems
Professor Dr. Sören Auer

Declaration

I hereby declare and confirm that this thesis is entirely the result of my
own original work. Where other sources of information have been used, they
have been indicated as such and properly acknowledged. I further declare
that this or similar work has not been submitted for credit elsewhere.

Bonn,

Gaurav Singha Roy

iii

Acknowledgement

Firstly, I would like to thank Dr. Sören Auer for his valuable time and
guidance during the master thesis duration, for providing insightful and
innovative solutions, and for being accessible whenever I needed. I would also
like to thank Judie Attard and Dr. Fabrizio Orlandi, for their mentorship
and constant guidance throughout the thesis. A special thanks especially to
Judie, for her dedication and relentless help, which was a major reason for
the completion of the thesis in such a small span of time.

I would also like to thank my biggest idol, my uncle, Joydip Homchowd-
hury, who is an innovator, an artist and a superhero. His constant guidance
and vision in the past years made my life colourful with software engineering,
and he had introduced me to computer science in the first place.

Last but not the least, I would like to thank my parents for their support,
even when distance was such a huge barrier. And finally, a special thanks to
Adela, for her patience and love which has not bounds.

v

Contents

Declaration iii

Acknowledgement v

List of Figures viii

Abstract 1

1 Introduction 2
1.1 Problem Context and Motivation 2
1.2 Thesis Contributions . 3
1.3 Thesis structure . 4

2 Background 5
2.1 The semantic web . 5
2.2 Linked OPEN Data (LOD) 5
2.3 Resource Description Framework (RDF) 7
2.4 RDF Serialization . 9

2.4.1 RDF/XML . 9
2.4.2 Turtle . 10
2.4.3 JSON . 10

2.5 RDF Ontology . 11
2.6 SPARQL . 11

3 Related Work 13
3.1 Linked Data and REST Services 13
3.2 RDF to Any . 14
3.3 Visualization of RDF data . 17
3.4 SPARQL Tools . 18
3.5 XSPARQL . 20

4 Approach 23
4.1 The Initial Approach . 24
4.2 RDF Exploration and Conversion API server 25

vi

Contents vii

4.2.1 RDF Exploration helper 26
4.2.2 RDF2Any Conversion 36

4.3 Query Builder GUI Tool . 53
4.3.1 Selecting datasets . 54
4.3.2 Exploring classes . 54
4.3.3 Properties Histogram 57
4.3.4 Equivalent Query . 60
4.3.5 Result Set Preview . 61
4.3.6 Result Set Download 61
4.3.7 SPARQL endpoint . 65
4.3.8 A Use Case . 65

5 Evaluation 68
5.1 Usability Feedback of Query Builder 68
5.2 Evaluation of Conversion module 70

5.2.1 JSON Conversion . 70
5.2.2 CSV Conversion . 70
5.2.3 RDB Conversion . 70
5.2.4 Generic Conversion . 70

5.3 Performance . 75

6 Conclusion and Future Work 76
6.1 Summary . 76
6.2 Future Work . 77

References 79

Appendix 82

List of Figures

2.1 LOD Cloud in March 20091 6
2.2 LOD Cloud in August 20142 7
2.3 Basic RDF graph . 8
2.4 An RDF triple example . 9
2.5 RDF/XML example . 10
2.6 RDF Turtle example . 10
2.7 RDF JSON-LD example . 11

3.1 A conversion from RDBMS to RDF triples using Triplify3 . . 16
3.2 R2D System Architecture4 . 17
3.3 Hierarcheal facets can be used to filter information using gFacet5 18
3.4 Possible recommendations given using the SPARQL query

formulation tool by the Graph Summary Project6 19
3.5 A lifting and lowering example 21
3.6 RDF lifting and lowering for Web service communication7 . . 21
3.7 XSPARQL : schematic view and how its conceptualized from

XQuery and SPARQL . 22
3.8 XSPARQL lowering example 22

4.1 Lucene indexes stored in the project 31
4.2 A flowchart describing the properties indexing logic in Lucene 31
4.3 Example Body text of Generic convert parsed into Body

Chunks expression tree . 52
4.4 DBpedia’s SPARQL Query Editor 55
4.5 Query Builder GUI : Selecting datasets 55
4.6 Query Builder GUI : Searching classes 56
4.7 Query Builder GUI : After selecting a class 56
4.8 Query Builder GUI : URI viewer 57
4.9 Query Builder GUI : Classes histogram 57
4.10 Query Builder GUI : Property histogram 58
4.11 Query Builder GUI : Property filter 59
4.12 Query Builder GUI : Select properties 59
4.13 Query Builder GUI : Equivalent query 60

viii

List of Figures ix

4.14 Query Builder GUI : Equivalent query showing all the selected
properties . 61

4.15 Query Builder GUI : Preview of Result Set 62
4.16 Query Builder GUI : The result set download modal 62
4.17 Query Builder GUI : The JSON download 63
4.18 Query Builder GUI : The Generic download 63
4.19 Query Builder GUI : A Sample Generic download template . 64
4.20 Query Builder GUI : A Sample Generic download template

after filled by the user . 64
4.21 Query Builder GUI : SPARQL endpoint 65
4.22 Use Case : Searching for the classes matching Artist 66
4.23 Use Case : Browsing the Artist class histogram 66
4.24 Use Case : Selecting the properties which the user wants for

the class, Artist . 67

5.1 Time taken for conversions of the class Person8 75

Abstract

With the upswing increase of the use of RDF datastores, it has an increase
in the number of users who want to access those data. RDF data exploration
and conversion can be exhaustive and challenging. There is a lack of tools
and frameworks which are needed to achieve this. Moreover, Conversion
of RDF data to other formats is hard and may require the user to install
a lot of softwares, if such softwares even exist. SPARQL is used mainly
to access data in RDF data stores. Forming queries in SPARQL can be
complex and overwhelming for even expert users. We thus propose the
use of an interactive Query Builder, using which a user can formulate a
SPARQL query even if they do not have any prior SPARQL experience.
This thesis, therefore focuses to address the above problems as well as
provide a framework with a RESTful solution which will allow developers
to develop their own exploration and conversion tool by consuming those
RESTful APIs. This framework can be utilized by non-expert users and
also expert users, who can extend this framework easily and personalize it
according to their requirements. Using the APIs from the framework, RDF
data exploration and conversion is achieved. A prototype of an interactive
Query builder has also been developed, which consumes these RESTful API.

Keywords. RDF Exploration, SPARQL Query Builder, RESTful and
Linked Data, RDF Serialization, RDF Conversion

1

Chapter 1

Introduction

1.1 Problem Context and Motivation
There has been a surge in Web technologies and cloud data over the past few
years. More and more users are making their data available through Linked
Open Data (LOD). A common framework, Resource Description Framework
(RDF) is adopted for providing meaningful semantics to the data. RDF
[AG+12] was designed to provide a common way to interact with various
computer applications. Since, they provide a common RDF/XML format,
there can be interoperability between different systems.

The LOD data providers provide APIs for their data. These API services
return data results in standard JSON and XML format. There are various
tools available which allows the user to convert this data to some popular
formats such as XML, JSON, Turtle, N3, etc. from RDF. Many open source
tools and RESTful services are available which help the users in achieving
these RDF to any conversions. But first, it is important that the user under-
stands the underlying data structure. RDF has a graph structure in which
the Data structure is not as rigid as its Relational Database counterparts.
The data in RDF data stores can be queried using the standard RDF query
language, SPARQL.

Let us consider a use case. Lets say, a user has built a Health cloud
software and has an internal database which stores all the data of medicines,
diseases, etc. Now this database needs to be updated on a regular basis. Lets
say there is a another service, which provides this data in an RDF format
by crawling through libraries like SNOMED CT1. Now, coming back to
the Health cloud user. Lets say the user needs regular SQL upload scripts
to update his database. Also, he is not interested in retrieving all of the
data available from the RDF data source. How does he manage that ? The
existing tools for conversion to RDBMS scripts from RDF usually convert
the whole dataset, which in our case, the user does not want. Also, there can

1http://www.nlm.nih.gov/research/umls/Snomed/snomed_main.html

2

http://www.nlm.nih.gov/research/umls/Snomed/snomed_main.html

1. Introduction 3

be a case, in which the user needs this data in a standardized interchange
format, which he uses to interact with other cloud applications. How does
he achieve such a generic format? These tasks can be overwhelming and
challenging, and is complex for all users. Also there aren’t many comparable
tools and frameworks available which help in achieving this. Keeping these
problems in mind, in this thesis, we strive to build a solution for it.

We can see from the problem context that exploration of RDF data is
not effortless. Neither is its conversion to other data formats. And since,
there is a lot of data available in RDF data sources, it becomes important
that users are able to easily retrieve them. There is also a lack of tools and
frameworks which help in these tasks. Therefore, the main motivation is to
build a solution so that this can be achieved in a platform independent way.
Because of this a RESTful approach has been taken, and a solution is made
so that developers can consume those APIs to make their own conversion
and exploration tools which are suitable to their requirements.

SPARQL is used for querying these data in RDF data stores. Even
though SPARQL is not much tougher than SQL to master, forming a query
in it can become quite overwhelming, even for expert users. This is because
for forming a query, it is important to figure out exact URIs of predicates
and objects which form the query. Also, it is difficult for the user to under-
stand the data structure of the data, its relations, ontology, etc. from the
first glance. Therefore, another motivation is to build an interactive Query
Builder which helps in bridging these gaps.

Finally, it is important that users are able to convert the RDF data to
the formats they desire. These formats include upload scripts to Relational
Databases, XML, JSON, CSV, etc. If data is uploaded to the Relational
databases, then the users who are comfortable with that will be able to
utilize the tried and tested tools available at their disposal for them. Also,
there should be a way to have a generic output, i.e., any kind of output
which the users configure themselves. To attend to these issues, a state-of-
the-art conversion module has been developed which is available to users
and developers through RESTful services. A generic conversion has also
been developed using a mini-propreitary language which allows the user to
configure the download format.

1.2 Thesis Contributions
In this thesis, we explore a RESTful solution for achieving a better RDF
exploration and conversion. The following contributions have been made

1. A RESTful solution has been made for RDF exploration and conver-
sion. These RESTful APIs can be consumed by other softwares and
tools. After a lot of research, it was concluded that there is no existing
tool or framework, which solves our problem and follows the same ap-

1. Introduction 4

proach. Best practices for RESTful APIs have been followed for this
solution.

2. An Interactive Query Builder prototype has been developed. Using
this Query Builder a user can explore the data structure of classes of
RDF data stores, and can form his own SPARQL query. The user can
extract the data in various output format he desires.

3. A powerful RDF to RDBMS conversion has been achieved which ad-
dresses the issues of the existing state-of-the-art conversion tools like
RDF2RDB project [TC+07].

4. Various JSON serialization formats have been compared. Some anoma-
lies in the existing formats have been pointed out. An experimental
JSON serialization format has been suggested for RDF data extraction
which removes some redundancies of JSON-LD format.

5. A propreitary mini-language has been developed using which a user
is exposed to building their own download template so that they can
achieve any kind of serialization.

1.3 Thesis structure
This master thesis will have the following structure :

• The first chapter has the Introduction. It will describe the problem
statement, and the motivation for the thesis.

• The second chapter contains some literature on the Background infor-
mation of the topics covered in the thesis. This elaborates a bit on the
theoretical knowledge for the underlying topics.

• The third chapter contains the Related Work. This provides some ex-
isting research to the problems which we address in this thesis.

• The fourth chapter describes our Approach to the problem. Here the
whole development process has been described including the chal-
lenges, failures, successes and the results encountered in the process.

• The fifth chapter Evaluates the results achieved through this thesis.
• The sixth chapter gives some more research and development sugges-

tions as Future work, as part of improvement of the overall product
obtained.

• The final chapter provides a Conclusion to the thesis.

Chapter 2

Background

2.1 The semantic web
The idea of semantic web is to have a highly interconnected data which
can be both machine readable and human readable. This will pave the way
for intelligent software that will utilize these semantics for more intuitive
softwares. The semantic web is not much different from the World Wide
Web. It is a proposed enhancement to it, which provides far more utility
[FHHNS+07]. In the World Wide Web, the information is usually human
readable. Since in semantic web, the idea is to make information both human
readable and machine readable, it is all about adding meaning and context
to the information. It will have semantics, metadata and ontologies in it.

Let us take an example. We all have watched the classic movie, The
Godfather. How will my software find out the director of the movie? How will
it find out other details like budget, running time, director of photography,
etc. ? Lets go more abstract. How will it know that The Godfather is a movie
? How will it know the movie has properties like director, budget, etc. These
kind of information , known as the metadata, are being added by semantic
web, which we will elaborate more in the following sections.

2.2 Linked OPEN Data (LOD)
The term Linked Data refers to a set of best practices for publishing and
connecting structured data on the web[BHB+08]. A lot of data providers
are adopting these best practices. Due to this, over the past few years a Web
of Data is being generated.
Tim Berners-Lee (2006), the inventor of the Web and Linked Data initiator,
suggested a 5 star deployment scheme, which acts as a guideline for pub-
lishing open data, in a way such that this data becomes linked in the global
data space[BHB+08].

The following is Tim’s 5 star Open data plan :

5

2. Background 6

1. The data should be available on the web (whatever format) under an
open license.

2. The data should be available as structured data. eg, if there is a table,
then attach an excel sheet instead of an image of the table.

3. Non-Proprietary formats should be used. e.g., CSV will be prefered
more over Excel as, CSV can then be used to upload to different soft-
wares supporting Excel.

4. URIs (Universal resource identifier) will be used as names for things.
People will then be able to identify and lookup those URIs easily and
point to stuff.

5. Links to other URIs should be included so that more things can be
discovered

The Linked Open Data is expanding at a very fast rate. Fig. 2.1 shows the
LOD cloud till March 2009. We can see in Fig. 2.2, how much the LOD
cloud has expanded till August 2014.

Figure 2.1: LOD Cloud in March 20091

1LOD Cloud image generated from http://lod-cloud.net/
2LOD Cloud image generated from http://lod-cloud.net/

2. Background 7

Figure 2.2: LOD Cloud in August 20142

2.3 Resource Description Framework (RDF)
Initially, the world wide web was meant for humans to read. Even though
everything available there was machine readable, it was not machine under-
standable since it did not have valuable semantics to it. It was difficult to
add useful semantics to it, due to the colossal amount of data available over
the World Wide Web. Therefore, it was proposed that a metadata should
be defined for this.
Definition 2.3.1. Metadata is defined as data about data.
Definition 2.3.2. Resource Description Framework (RDF) is a foundation
for processing metadata; it provides interoperability between applications
that exchange machine-understandable information on the Web[LS+99].

The basic RDF model allows to represent data in the form of a directed
graph. This allows in representing named properties and property values.
This RDF model, represents data drawing from well established data
modelling techniques such as entity relationships or class diagrams. The
attributes of the resources become the RDF properties, and therefore
the RDF model will resemble a lot like entity-relationship diagrams. In
object oriented design terminology, the resources will correspond to objects
and properties will correspond to instance variables[LS+99]. We will now
formally define the RDF Data Model.

2. Background 8

Definition 2.3.3. RDF Data model is a syntax-neutral way of representing
RDF expressions [LS+99].

The RDF data model has three object types :
Resources. All things being described by RDF expressions are called
resources[LS+99]. In the context of object modelling, these represent the
objects or a collection of objects. The resources can be either URIs, literals
or blank nodes. Some resources will have a unique identifier which provides
a unique identitty to it. In an RDF Data model it is done by a Uniform
Resource Identifier (URI). The concept is, anything can have a URI. This
opens up the possibilities for data in different sources to have links. Literals
represent quantitative value eg, first name, weight, height, etc (values of
string, boolean, integer, etc.). An RDF blank node is an RDF node that
itself does not contain any data, but serves as a parent node to a grouping
of data[MSDN].
Properties. A property is a specific aspect, characteristic, attribute, or
relation used to describe a resource[LS+99]. In the context of object
modelling, properties represent the relationships. This can also describe
permitted values.
Statements. A specific resource together with a named property plus the
value of that property for that resource is an RDF statement. In RDF,
there are three individual parts of the statement, viz, subject, predicate and
object[LS+99]. Predicates are the properties which we just described. The
subjects are always resources. The objects can be either resources or some
quantitative value called Literals. Fig. 2.3 shows how these statements
make up a basic RDF graph. Together, the subject, predicate and object are
called triples.

Subject ObjectPredicate

Figure 2.3: Basic RDF graph

Let us take an example. We would like to represent the movie The Godfather
in an RDF graph. We will represent, the movie’s Director, Francis Ford
Coppola and also the budget of the movie. We have drawn the couple of
triples required in fig. 2.43. In the first triple, we will represent the infor-
mation that the movie Godfather has director Francis Ford Coppola. We
can see in the fig. 2.4, this is represented as "dbpedia:The_Godfather

3Example triples taken from DBpedia[dbpedia-swj]

2. Background 9

dbpedia:The_Godfather

dbpedia:Francis_Ford_
Coppola

dbpedia-owl:hasDirector

6500000^^xsd:double

dbpedia-owl:hasBudget

Figure 2.4: An RDF triple example

dbpedia-owl:hasDirector dbpedia:Francis_Ford_Coppola". dbpe-
dia:The_Godfather is the subject here, with predicate dbprop:hasDirector
and object dbpedia:Francis_Ford_Coppola. "dbpedia" is a prefix
for the namespace which has URI "http://dbpedia.org/resource/".
The actual URIs for the subject dbpedia:The_Godfather
is http://dbpedia.org/resource/The_Godfather, the predicate
dbpedia-org:hasDirector is http://dbpedia.org/ontology/director
and the object dbpedia:Francis_Ford_Coppola is
http://dbpedia.org/resource/Francis_Ford_Coppola. We can see in
this, the object is a resource with a URI. Now we will try to form a triple
where the object is a quantitative value, i.e., a Literal. In fig. 2.4 the triple
"dbpedia:The_Godfather dbpedia-owl:hasBudget 6500000ˆˆxsd:double"
represents, the budget of the movie. The object here is a literal of value
double. This means that the movie Godfather has a budget of $6.5 million.

2.4 RDF Serialization
Several common serialization formats exist for RDF.

2.4.1 RDF/XML

The RDF Graph model can me serialized in an XML format along with
its semantics. An RDF triple, as discussed in the previous section will have
three components, viz., subject node, predicate node and object node. These
nodes, of course will be URIs, literals or blank nodes. In order to encode
this RDF graph data in XML[GS+14], the nodes and predicates have to be
represented in XML terms. Fig. 2.5 shows how the RDF example given in
the previous section (fig. 2.4) can be serialized.

2. Background 10

Figure 2.5: RDF/XML example

2.4.2 Turtle

Turtle stands for Terse RDF Triple language [BBPC+14]. Turtle document
allows represting the RDF graph data content in a compact textual content.
This representation is both machine readable and human readable and pro-
vides a much simpler human readability than other serialization formats.
Fig. 2.6 shows how the RDF example given in the fig. 2.4 can be serialized.

Figure 2.6: RDF Turtle example

N3 or Notation3 is also a similar format [BC+11]. Turtle is basically a
successor of N3.

2.4.3 JSON

JSON stands for JavaScript Object Notation. It is a very lightweight data -
interchange format which is nowadays becoming the de facto format to get
data from REST APIs. The popularity of JSON can be attributed, to the fact
that in any programming language, the JSON data becomes one big Hash
Map, which has key value pairs for data. This makes the life of programmers
much simpler, as they do not have to grind over the cumbersome parsing of
heavier formats like XML.
W3C already has a standard JSON format for retrieving queried SPARQL
result set. A new specification, called the JSON-LD which stands for JSON
Linked Data has been proposed and is undergoing review by W3C members

2. Background 11

[SLKLL+14]. Fig. 2.7 shows how the RDF example given in the previous
section (fig. 2.4) can be serialized into JSON-LD.

Figure 2.7: RDF JSON-LD example

2.5 RDF Ontology
In the context of Web semantics and knowledge sharing, ontology refers to
the definition of concepts and its relationships.

Definition 2.5.1. Ontology is a specification of a conceptualization. In the
context of knowledge sharing, ontology means a specification of a conceptu-
alization[G+93].

Definition 2.5.2. Vocabulary defines the concepts and relationships, used
to describe and represent an area of concern[w3c+ontology].

Defining "ontologies" or "vocabularies" organises the knowledge base.
They are used to classify the terms that can be used for some particular
applications, define possible relationships and constraints. These can get
very complex. There is not such clear differences between "ontologies" and
"vocabularies". In general, ontologies are more complex and is a formal col-
lection of terms. Vocabularies on the other hand is not that formal.

If we try to find out the ontology of the RDF example mentioned in the
previous section (fig. 2.4), we notice that dbpedia:The_Godfather is of type
say dbpedia:Movie. Now we can define ontologies in the :Movie, that it can
have a director, viz., dbpedia-owl:hasDirector. This is a relationship which
we are defining in the ontology. It gives more structure to the data.

2.6 SPARQL
SPARQL is a W3C recommended query language for querying data in RDF
datastores[PS+13]. SPARQL is a rule based language in which it returns
results based primarily on the triple rules which has been put in the query,
ie, subject, predicate and object.

2. Background 12

This is a simple SPARQL query in which am searching for subjects which
have an object cat.

1 SELECT ?s WHERE { ?s ?p "cat" }

Now going back to the example (fig. 2.4), We will need a SPARQL query
something like

1 SELECT ?o WHERE {
2 <http://dbpedia.org/resource/The_Godfather> ?p >o.
3 }

Here, the subject is the Godfather, and I will retrieve all the objects of the
Godfather.

Chapter 3

Related Work

In this chapter, we will discuss some research which has been done in the Ex-
ploration and Conversion of RDF data. There has been a lack of comparable
tools and framweorks on the lines of our approach. Since our main motiva-
tion is to provide better exploration and conversion of RDF data through
RESTful API services, it is important to research on overlapping of inter-
ests of RESTful services and Linked Data. We will then move on to RDF to
Any conversions with focus on RDBMS conversions. Since for exploration,
visualization is important, we will also focus on some research done in the
field of Visualization of RDF data. As one of our motivations is to provide
help for non-native SPARQL users, we will explore some research done for
assisted SPARQL query formulation. And finally, because we want RDF to
Any conversion, we describe an interesting research, which suggests a new
language called XSPARQL [AKKP+08]. This provides an interoperability
from RDF data to XML and vice versa.

3.1 Linked Data and REST Services
There seems to be an obvious alignment between Linked data and REST ser-
vices. An insightful paper has been published which debates whether REST
and Linked Data are suitable for domain driven development [PRM+11]. In
Linked data, the data is located using unique identifiers called URIs which
is used for either lookup or for data retrieval. The common interests for both
of them are [PRM+11]

1. The key information which is to be extracted in both REST and Linked
data is a resource

2. In both of them Linking is optional. It is not always necessary to
include links such that more information can be retrieved using URIs.
The URIs can be used just for unique identification.

3. A big misapplication in both the cases is to assume that semantics
can be encoded in a REST url or in Linked Data, its URI. They are

13

3. Related Work 14

used just for identification and retrieval purposes and semantics are
not implied implicitly.

4. Both of them are designed in a way that they are adaptable. Modifi-
cation of resources are immediately reflected as resources are retrieved
through either REST urls or in Linked Data through URIs.

5. Through Domain Driven Design [E+04], the focus is mainly on iter-
atively developing domain modeling. This is practiced and outlined
both in REST and Linked Data designs.

Even though there are common interests in both of them, there are dif-
ferences also. One underlying difference is when you compare API vs. Model
[PRM+11]. While REST services do not clearly expose the relationships ,
and those are exposed only if the software allows to, but in Linked Data, this
is exposed through the ontologies defined. Content negotiation is a major
differentiating factor. RESTful services have a negotiation with the client so
that the client knows what kind of data to send and what it will retrieve.
In Linked Data such content negotiation is yet to be achieved and standard
serialization formats are being defined. And finally, in Linked Data, the data
is mostly read-only and delete, update actions are usually not permitted. In
RESTful these are done by POST, DELETE AND PUT actions.

From this research we can conclude that REST and Linked Data can
have a harmonous future. The RESTful services and Linked Data can com-
plement each other to enable services like eResearch [PRM+11]. The key is
to allow domain experts, researchers and developers to collaborate and work
in harmony to share the information. Now Linked Data, using RDF, provides
a unique structure to the data which eases the path for information sharing.
RESTful services, can be used to access this information. Developers can
even update, add, and delete these information using RESTful services. Us-
ing this harmonous approach, both of these can provide a common interface,
so that Linked Data is unanimously accessible to the users.

3.2 RDF to Any
In this section we will explore some research which has been done in the
tools which aid in conversion of RDF formats to various other popular for-
mats. There are some tools available which enable this but our research
focus mainly lies in two areas. Firstly, we would like to explore more into
conversion to RDBMS scripts. There hasn’t been much research in this field.
We will discuss this in detail, later in this section. Secondly, we wanted an
approach using which a user can configure his own output format. This
approach cannot be comparable to existing tools, and the only research
which came close to it is the suggestion of a language called XSPARQL
[AKKP+08], which allows the user to extract the RDF data into whatever
kind of XML format they desire. This has been discussed more in detail in

3. Related Work 15

the next section.
There has been considerable research for serialization of RDF data to

other formats. XML, JSON, Turtle, N3, etc. are some commonly available
formats. The RDF Translator [SRH+13] project is one such project in which
an RDF graph can be downloaded to the above mentioned popular formats
using REST services. This RDF Translator takes an input of an RDF graph
source and, then the user can select from various popular output formats like
XML, Turtle, N3. The advantage of this tool is that apart from a Browser
based UI, it also provides REST services for these conversions. But, the
problem with such kind of tools is that, you will have to convert the whole
graph or the datastore. Now if the user needs to convert just a subset of the
dataset, then he has to rely on SPARQL to extract those subsets. Usually
datastores have SPARQL enpoints using which the user can interact with
them. Datastores like DBPedia1 [dbpedia-swj], have APIs for converting
their RDF data to formats like HTML, XML, JSON, N3, Turtle, etc. But
a problem with extracting data from SPARQL Query Result sets is that,
it is usually in a very one-dimensional tabular form. You only get those
information which you have put in the SELECT statement of SPARQL.

Now, we will focus more on the difficult conversion, i.e., to RDBMS
scripts. With the emergence of so much data in the RDF, it becomes impor-
tant to export those data into Relational Databases. There are various age
old tried and tested tools for visualization, querying, logistics, etc. available
for RDBMS systems, which the user would want to utilize. They can do that
for RDF data only if they have the data available in Relational Database
format. Hence conversion to RDBMS from RDF, becomes vital. This con-
version is not an easy task. It becomes important to address various issues
like, data structures, normalization, relations using foreign keys, etc. This
approach is unique and has no comparable counterparts. Even though there
hasn’t been much research in this field, there has been some research and
efforts to achieve this. This is difficult of course as, in RDF, the structure is
very flexible compared to the rigid structure of RDBMS.

First let us look into some research in which Relational databases are
mapped to RDF Graphs. D2RQ [BS+04] platform provides an interesting
tool in which it takes a relational mapping as an input and provides a vir-
tual RDF graph as an output. It contains a declarative mapping language
D2RQ Mapping Language [BS+04] for describing the relation between an
ontology and a relational data model. It also contains a useful D2RQ Engine
[BS+04], which is a plug-in for Jena toolkit, using which mappings in Jena
API can be rewritten for calls to SQL queries against the database. There
is a similar tool, Virtuoso RDF Views [EM+07], which does the same thing.
Triplify [ADLHA+09] is a very commendable effort in mapping relational
databases to RDF graphs, JSON and linked Data. It is very lightweight and

1http://dbpedia.org/

http://dbpedia.org/

3. Related Work 16

has been implemented using less than 500 lines of code. It uses very sim-
ple concepts, eg, it will create properties based on column names. Fig. 3.1
shows how the columns label and price is converted to properties proper-
ties rdfs:label and shop:price. These concepts have been used by us to do
the tranformation from RDF to RDBMS. Another notable effort has been
RDF123 [HFPSJ+08], which tranforms spreadsheets to RDF data.

Figure 3.1: A conversion from RDBMS to RDF triples using Triplify2

Some more research which is similar to what we require is conversion
from RDF to RDBMS. RDF2RDB project [TC+07] is the most promising
one in that field. It is an open source free to use tool developed in Python.
It converts RDF Data from the Semantic web to relational databases. It
creates SQL scripts which works in various versions of MySQL3 database.
The most essential part is the schema which has to be generated for the
tables. So first, what it does is, it creates tables of all the classes for which
the thing (or object) belongs. If the class is unknown then the thing is added
to the table things. A table consists of at least two columns, viz., a primary
key, and a column for uri. It will then create tables for both ObjectType and
DataType in which these properties are mapped. These tables are named like
<class_name>_<property_name>_<datatype>. Here we can see two is-
sues. One is in the naming convention there is no need for datatype. Also, it
always creates a new table for each property. For one-to-many relationships,
this is fine and is necessary for normalization, but for one-to-one relation-
ships this is inefficient, as it creates an unnecessary table. We have overcome
this problem and we take into account whether the property is one-to-many
or one-to-one before creating a schema for a new table. Otherwise we add
the property as a column to the same class table. This software is efficient as
it only stores the schema in memory and the rest data is printed on the fly.
Another research R2D [RGKST+09] also converts RDF to virtual relational
databases. The research’s mean motivation was to visualize RDF data, but
they achieve so by utilizing various visualization tools available for RDBMS
systems. For that reason they convert the RDF data to virtual RDBMS
data. We will discuss more about this research in the following section.

2Image taken from http://triplify.org/
3MySQL boasts of being the most popular open source relational database

http://www.mysql.com/

3. Related Work 17

3.3 Visualization of RDF data
Visualization of RDF data is essential as it gives the user more information
on the relations and the ontology of the data. Various tools are available
which enable the user with this. One interesting and yet uncomplicated
research is the R2D [RGKST+09] project. In this, they approach with a
simple method to convert the underlying RDF data to RDBMS. Now once
it is achieved, the user can utilize the numerous visualization tools avail-
able at their disposal for viewing Relational Data. The main logic behind
is, it creates an R2D Map file which contains the underlying schema for the
RDBMS conversion. Now using that map file, a virtual relational schema
is formed and the data is viewed using standard visualization tools for re-
lational databases. The advantage of this tool is that it does not duplicate
any data. Fig. 3.2 shows the system architecture of the project.

Figure 3.2: R2D System Architecture4

Another notable research is the Visual Data Web project5. In this project
they have developed various tools which aid in Data visualization for Seman-
tic Data. Their tools are commendable and almost require no installation as
each one of them runs on web browsers. The only criticism is that, it relies
heavily on flash, which is not a very popular library these days and is slowly
losing support with many devices. One of the tools developed by them is
gFacet [HZL+08]. Using this tool the user can create various facets to explore
the data structure of the underlying RDF graph. Fig. 3.3 shows how hierar-

4Image taken from the paper [RGKST+09]
5http://www.visualdataweb.org/

3. Related Work 18

cheal facets can be used to filter information and more data can be retrieved
or visualized using a simple GUI tool. These facets can be added or removed
interactively using the tool. Another tool is the SemLens [HLTE+10]. Using

Figure 3.3: Hierarcheal facets can be used to filter information using gFacet6

this, trends and correlations in RDF data can be analysed. This provides a
visual interface to combine scatter plots with semantic lenses. The scatter
plots provide global visualizations which can be drilled down further using
the semantic lenses. Another tool is the RelFinder [HLSZ+10]. This helps
the user to garner some overview of the data. The user can visualize the
data structure of the objects in the RDF graph using a visual tool.

There are much more tools available for visualization. Our main focus of
the thesis is not exactly visualization but to provide APIs using which such
tools can be built. This is discussed more in the next chapter for Approach.

3.4 SPARQL Tools
SPARQL is not a simple query language to master. Because of its complexity,
it has a slow adoption with the users. It is important to note that, the
language itself is not more complex than, say SQL, but it still is challenging
as a lot of exact URIs are needed for matching properties and filters. For
these reasons, it is important to have tools at the user’s disposal, which
will aid him in SPARQL query formulation. This task is challenging, and
complex, and some research has been made in this field.

6Image taken from the paper [HZL+08]

3. Related Work 19

There has been an open source project for Graph Summary [CPCDT+12]
which has an application for Assisted SPARQL Formulation. Using the tool,
the user is able to formulate his queries without needing to individually
explore each object’s data. This will reduce the time, the user needs to
study the data in order to query it. How it works is, it first builds up a
graph summary data by reading through all the triples of a graph. Now
when the user starts typing in the SPARQL query text editor (fig. 3.4), then
recommendations show up instantly for classes, predicates, relationships and
named graphs (fig. 3.4). The drawback we can see with this approach is that

Figure 3.4: Possible recommendations given using the SPARQL query for-
mulation tool by the Graph Summary Project7

it is not useful for users who have absolutely no experience with SPARQL.
This will still require the user to know the correct syntax of a SPARQL
query and how to form a correct query.

Some research has also been done for interactive query builders for
SPARQL queries in which the user does not require any knowledge of
SPARQL. There is a project, QueryMed [SS+10], which provides an intu-
itive GUI Query Builder which can be used to query Biomedical RDF Data.
There is another Query Builder tool, which formulates SPARQL queries for
Drupal8 [C+10]. Apart from these, there are some freely available online

7Image taken from the paper [CPCDT+12]
8https://www.drupal.org/

3. Related Work 20

tools for some RDF data sources, which allows the user to formulate their
SPARQL query. They go with the simple approach, to select classes, and
then proceed with filtering properties. The advantage of these tools is that,
the user does not need to know SPARQL. Even non-native SPARQL users
can successfuly build a query. The disadvantage we came across in these
tools is that, in most of them, they are not as visually powerful as a user
would want. They do not reveal the data structure information to the user.
So even if the user has access to UI functionalities to build a query, he does
not know what is the data structure. Keeping these pros and cons in mind,
we opted for this approach and have built a simple Query Builder which has
all these features. We also provided a class histogram, property histogram,
which provides a visual information on the underlying data structure. This
has been discussed more in detail in the next chapter, in section 4.3.

3.5 XSPARQL
For a generic serialization, we will probably require a small programmable
language using which the user can build his own serialization template. This,
of course, is tricky and requires some learning curve, and it is difficult to
find some comparable research. XSPARQL [AKKP+08], is one such research
which provides an interoperability between the two worlds of RDF and XML.

XSPARQL [AKKP+08] stands for extensible SPARQL. XSPARQL was
submitted for official W3C recommendation in 2009 and its approval is
still pending. It provides a common language for querying RDF data us-
ing SPARQL like querying rules and this will retrieve output to either RDF
or XML. Alternatively it can query XML data using XQuery9 like rules
and this will retrieve output to XML and SPARQL. It provides an inter-
esting interoperability between these two data formats using one common
language.

It is clear that the main purpose of building this language was to provide
an easier lowering and lifting for RDF.

Definition 3.5.1. Lifting refers to extracting RDF from XML.

Definition 3.5.2. Lowering refers to extracting XML from RDF.

Fig. 3.5 gives an example of lowering ad lifting. The web service archi-
tecture to achieve this has been summarized in fig. 3.6.

Fig. 3.7 shows a schematic view of XSPARQL. We notice that all three
languages here have 3 parts, viz., The prolog, the head and the body. Fig.
3.8 shows how lowering can be achieved using XSPARQL. Here the prolog
stands for any global declaration we need for the rules we are using. The

9XQuery is a language used to query XML data
10Image taken from the paper [AKKP+08]

3. Related Work 21

Relations

Person Person Person

Knows Knows Knowsname namename

"Alice" "Bob" "Charles"Bob Charles Charles

_:b1 _:b2 _:b3

"Alice" "Bob"

"Charles"foaf:Person rdf:type

rdf:type
foaf:name foaf:name

foaf:name

foaf:knows foaf:knows

foaf:knows

rdf:type

Lowering

Lifting

RDF
(Shown in Turtle format)

XML

Figure 3.5: A lifting and lowering example

Figure 3.6: RDF lifting and lowering for Web service communication10

head is the return values of the query. It will return data in the format we
want. The body is the main part of the query in which we form rules on what
to return. In the language XSPARQL, what the authors have proposed is
that they can use a combination of the 3 parts of both SPARQL and XQuery
to have an output format which they desire.

We notice that from the example in fig. 3.7 we can achieve any kind of
XML serialization of RDF data using XSPARQL. But there is a problem
with that. For such kind of conversion the user still needs to know SPARQL.

3. Related Work 22

Figure 3.7: XSPARQL : schematic view and how its conceptualized from
XQuery and SPARQL

Figure 3.8: XSPARQL lowering example

Not only that, he needs to know XQuery. Now understanding both these
languages results in a steep learning curve. Moreover, probably for most of
the conversions we do not need so many complicated features presented here.
What we need probably some simple programmable features which will help
us in achieving any conversion from RDF. In the next chapter for Approach,
we will take up the good things of XSPARQL and come up with a simpler
language, which will aid the user to build his own serialization output.

Chapter 4

Approach

We discussed in the previous chapter various research which has been done
related to what we want to achieve in our thesis. But most of the applications
do not specifically solve our problem. We need a lightweight solution to solve
many of these problems.

1. We need a visual tool to explore the data structure of various classes in
a particular dataset. For this we need various information for the data
structure like subclasses, properties, count of objects etc. This can be
easily achieved through SPARQL. But then again, it has a learning
curve as understanding rule based languages is not as simple even for
expert users. Moreover it requires a lot of exact URI lookup, which
can become cumborsome, even for an expert SPARQL user.

2. We need the visual tool to enable a user to form his own SPARQL
query without having any prior knowledge of SPARQL. This can be
achieved by providing a responsive GUI, using which the user can select
properties, add filters for those properties, etc., using some drag-and-
drop options.

3. We need a smarter conversion of RDF data to RDBMS data. So far
we saw in the previous chapter, there are tools which do this (section
3.2), require the whole RDF dataset. We need a solution in which the
conversion is smarter for a subset of the RDF dataset, which the user
most probably requires.

4. We need to address a smarter JSON-LD conversion reducing a lot of
data redundancy and inefficiency which can arise due to the way how
keys are defined in the JSON output structure.

5. An RDF to any conversion has to be attempted. A solution has to be
provided, which is simple and easy to use and will allow the user to
convert to any kind of serialization he wants.

6. Finally, We have to make our software interoperable. All these has to
be achieved in such a way that any software developer can utilize this

23

4. Approach 24

exploration tool and build his own using GUI tool very easily. In short,
we had to achieve this in such a way that standard APIs are provided
which can be consumed by any application.

4.1 The Initial Approach
At first we opted for an approach in which we will provide a universal API
for all the developers using standard REST API principles. We needed to
build an API service. This API service will be consumed by tools so that
people without any knowledge of SPARQL will be able to use those tools.

We proposed a simple REST action which would require the following
parameters

• dataset - This will be the URL of the SPARQL endpoint of the dataset
• classes - This will be a list of classes (comma separated) which we

want to download.
• poperty_filters - property filters would have been passed (comma sep-

arated) through this.
• output_format - This will specify the output format, viz., CSV 1,

RDB2, JSON, etc.
Now a full fledged REST action for this can look like3

1 GET /v1.0/convert?dataset=http://example.dataset &
→˓ classes=http://example/resource/Person &
→˓ property_filters=height>180,weight<80 & output_format=RDB

We notice from the above list that, there is no parameter for a SPARQL
query. So that means a user not familiar with SPARQL can easily use it.
The input parameters dataset, classes, output_format all seem to be alright
and in place. Defining the property_filters seems to be a bit tricky. A sample
value of property_filters can be

1 property_filters=height>180,weight<80

There are a couple of disadvantages for this parameter. Firstly, the user
needs to again learn proper formats on how to send these parameters. Even
though the learning curve for this task is not that steep as learning a new
language, but its still some learning curve. Secondly, it is assumed that the
various properties here is comma separated, so how will we specify if the
filter is actually an OR filter and not just AND filters. We can have very
powerful AND filters but it does not allow the user to have OR features
which will not give the user the flexibility he desires. Can we also have
nested filters using this ? Now nested OR and AND can also be achieved by
having a complex structure to the parameter’s value like

1Comma separated values
2RDBMS SQL upload scripts
3The URL is not shown with proper URL encoding for better readability

4. Approach 25

1 property_filters=(height>180)||((height<170)&&(weight<60))

But again, this will mean that the user will have to understand this format
properly.

One important demographic of users which won’t benefit from this, will
be the users who are familiar with SPARQL and do not want to learn these
new formats. How do we deal with such requests ? Because of such issues
this approach was abandonned and a two-way approach was suggested. The
issues are summarized below

1. New format for property filters. The property filters need to be
sent in a new format. This will require the user to again master some-
thing non-standard and new.

2. Nested property filters difficult. Using this approach, nested prop-
erty filters will be difficult to handle. By default, this approach would
have just handled AND operators among multiple filters.

3. No support for SPARQL. Since this approach does not need
SPARQL, users already familiar with SPARQL would not have bene-
fitted much with this approach.

Now, lets come to the proposed final two-way approach. Firstly, A full
fledged API server was made with complete REST API which had various
actions like searching of classes, helping in filters, conversion, etc. Now the
input paramter property_filters has been discarded and instead a parameter
query is passed. This will be a SPARQL query. Now how will a user who
does not know SPARQL form the query?

For this we came up with another part. We built a GUI tool which will
consume the actions by our exploration API server. In this the user will
explore the RDF data, perform various actions like selecting filters using
GUI tools and our library will build an equivalent sparql query. So both
native and non-native SPARQL users can use the same REST API. Also,
this means that, anyone can build their GUI tool for this using the above
APIs.

4.2 RDF Exploration and Conversion API server
This will provide 2 main tasks viz., RDF Exploration helper and RDF2Any
Conversion. To provide both these tasks all actions are provided as REST
API services so that it takes care of software interoperability.

Technologies used - The following technologies/libraries have been
used to implement this portion

• Java - This software is built purely on Java. The reason Java was
chosen as it provides some strong Object Oriented data structures,
and since Java is very common, this can be extended in future by
other developers. Also, there is a powerful open source library, Jena

4. Approach 26

which is available for Java.
• Jena4 - This helps you in executing SPARQL queries from a Java

software and also has some powerful in-built methods for exploring
the SPARQL Result Set.

• Jersey - This is a Glassfish5 based lightweight server. It provides the
main REST API structure. The software has been developed in a very
moduler manner so that this can be replaced later with a more powerful
server like the apache tomcat6.

• Jackson7 - This is a high performance Java based JSON processor
which provides a powerful JSON output of Java objects.

• Lucene8 - This provides an in-house indexing solution which is used
to retrieve properties and its statistics of classes very fast.

4.2.1 RDF Exploration helper

In this section we will explain various actions we have developed which
essentially helps in exploration of RDF data, its structure etc. This is useful
and can be consumed by a GUI tool (We have developerd a prototype of
such a GUI tool which we will discuss more in section 4.3), to provide proper
visual information to the user.

4.2.1.1 Classes search

This action returns a list of classes which match a particular search string.
The base action looks like

1 GET /v1.0/builder/classes

This action requires the following input parameters.
• dataset - SPARQL endpoint of the dataset
• search - search string which will match the class
• force_uri_search - This is a boolean value and is optional. If set true,

then it forces to search for string in the uri patterns of classes which
do not have any labels. Set this to true only if you want to search for
classes which do not probably have any labels. By default it is false
since REGEX searches are pretty expensive in SPARQL especially if
we have to search in the middle of a token. In such cases it opts for
brute force techniques which is not very optimal.

This action like any other standard REST API call, will return a JSON
output.

4https://jena.apache.org/
5https://glassfish.java.net/
6http://tomcat.apache.org/
7http://jackson.codehaus.org/
8http://lucene.apache.org/

https://jena.apache.org/
https://glassfish.java.net/
http://tomcat.apache.org/
http://jackson.codehaus.org/
http://lucene.apache.org/

4. Approach 27

We had to achieve an important search challenge with this action, i.e.,
to make sure we return our search result matching in various languages. We
should somehow be able to return results in such a way that the same class’s
multiple language labels are returned (which have matched). The following
shows a sample JSON response for a search of string "anim" in DBPedia9

1 {
2 "dataset": "http://dbpedia.org/sparql",
3 "search_string": "anim",
4 "searched_items": [
5 {
6 "labels": {
7 "it": "animale",
8 "pt": "animal",
9 "fr": "animal",

10 "en": "animal"
11 },
12 "sequence": 1,
13 "uri": "http://dbpedia.org/ontology/Animal"
14 },
15 {
16 "labels": {
17 "it": "personaggio animanga",
18 "en": "animanga character"
19 },
20 "sequence": 2,
21 "uri": "http://dbpedia.org/ontology/AnimangaCharacter"
22 },
23
24]
25 }

Notice line 6. Here we have provided multiple labels as a hashmap. Hence,
the user can only get results of the languages he wants. This gives a lot
of freedom to the developer of the visual tool. Notice line 12. A sequence
is provided so that the search results can be ordered (1 having the highest
priority). This has been included as many times the order of the returned ob-
jects in JSON varies from library to library. Adding this makes our software
more scalable. In our current version, it always returns in correct order.

We are doing a SPARQL search query which will return us a result of
searched classes in the dataset. The following query is being used

1 SELECT distinct ?class ?label
2 WHERE {
3 {?class rdf:type owl:Class} UNION {?class rdf:type rdfs:Class}.
4 ?class rdfs:label ?label.
5 FILTER(bound(?label)
6 && REGEX(?label, "\\b<search_string>","i"))
7 }
8 ORDER BY ?class

9http://dbpedia.org/

4. Approach 28

In line 3 above, we match objects of type owl:Class or rdfs:Class, the two
available standard ontology for classes. Now a disadvantage is that this won’t
return those classes which do not have these two types defined. A way to
solve this is to replace it with "?object rdf:type ?class", but we had to aban-
don that approach as the query was too expensive and always returned
Http Exception 50010. In line 6 , we pass a regex like that because we want
to search only the beginning of tokens of a label. So if we search "ani" it
will match classes Animal, Farm animal etc. but it won’t match the class
Banished princes.

We notice that this will search through only labels of classes. Now if a
class does not have a label then it becomes a problem. For such scenarios,
we have provided another input parameter force_uri_search which if set
true will result in searching through URI patterns of classes too. For such
scenarios we will execute another SPARQL query apart from the previous
to match URI patterns and the results of both the queries are appended.

1 SELECT distinct ?class ?label
2 WHERE {
3 {?class rdf:type owl:Class} UNION {?class rdf:type rdfs:Class}.
4 OPTIONAL {?class rdfs:label ?label}.
5 FILTER(!bound(?label)
6 && REGEX(?class, "<search_string>","i"))
7 }
8 ORDER BY ?class

Notice line 5. We are matching for URIs which do not have any labels. We
are doing this because we want to reduce the number of URIs to be searched
as a free search REGEX is an extremely expensive search and no indexing
solutions are available which speeds up this search.

This search can be speeded up by providing an in-house index lookup
which we will discuss more in Chapter 6 for Future work.

4.2.1.2 Class properties

This action will provide the end application with information about the data
structure of the class. It will return a list of properties. The base action looks
like

1 GET /v1.0/builder/properties

This action requires the following input parameters.
• dataset - SPARQL endpoint of the dataset
• class - URI of the class for which the properties are to be retrieved.

This action like any other standard REST API call will return a JSON
output.

10This means an internal server error has happened. In our case it is because the RDF
resultset the SPARQL query is dealing with is huge and it cannot handle it

4. Approach 29

It is always important that the user knows what is the data structure of
a class. In any graph database this can be tricky as the structure is always
dynamic and not as rigid as RDBMS systems. Hence, we decided to build
this action which will provide with the properties of the class.

There are two kinds of properties. One is an Object type property and
the other, Data type property.

Definition 4.2.1. Object type property - In a ?subject ?predicate ?object
triple, the ?predicate is an Object type property if its range is a URI Object
i.e., ?object is a URI.

Definition 4.2.2. Data type property - In a ?subject ?predicate ?object
triple, the ?predicate is a Data type property if its range is a Literal Object
i.e., ?object is a literal.

Apart from the properties it is essential that the user gets some informa-
tion on how common is the property for that class. So we return a count of
the range objects11 of that property. We also return whether for some objects
of the class have multiple range objects for that property. The following is
the properties JSON output when the API is called for a class "Actor" with
URI "http://dbpedia.org/ontology/Actor" from DBPedia.

1 {
2 "rdfClass": {
3 "dataset": "http://dbpedia.org/sparql",
4 "indexCreated": true,
5 "label": "actor",
6 "properties": [
7 {
8 "count": 18249,
9 "label": "has abstract",

10 "multiplePropertiesForSameNode": true,
11 "range": {
12 "label": "langString",
13 "uri":

→˓ "http://www.w3.org/1999/02/22-rdf-syntax-ns#langString"
14 },
15 "type": "data",
16 "uri": "http://dbpedia.org/ontology/abstract"
17 },
18 {
19 "count": 907,
20 "label": "birth name",
21 "multiplePropertiesForSameNode": true,
22 "range": {
23 "label": "langString",
24 "uri":

→˓ "http://www.w3.org/1999/02/22-rdf-syntax-ns#langString"

11In ?s ?p ?o, if ?s is an object of the searched class and ?p is the property then the
range object is ?o.

4. Approach 30

25 },
26 "type": "data",
27 "uri": "http://dbpedia.org/ontology/birthName"
28 },
29
30 {
31 "count": 1807,
32 "label": "birth place",
33 "multiplePropertiesForSameNode": true,
34 "range": {
35 "label": "place",
36 "uri": "http://dbpedia.org/ontology/Place"
37 },
38 "type": "object",
39 "uri": "http://dbpedia.org/ontology/birthPlace"
40 },
41
42],
43 "uri": "http://dbpedia.org/ontology/Actor"
44 }
45 }

We can see from the output above that we return a list of properties. Each
property has a key "type", whose value can be either object or data which
specifies if it is an object type property or a data type property. In line 10
we notice a key "multiplePropertiesForSameNode" which specifies if some
objects of the class have multiple range objects for that property. Its a
boolean value. In Line 11, we notice that there is a key "range" which specifies
the range of the property.

By taking a look at the output above, it seems obvious that to have a
fast response we need to crunch the statistics before hand and store it some-
where. For this purpose we use a lucene indexing solution. We opted for
lucene because we can include it in our Java project pretty easily as it also
runs on Java. We are storing the indexes in the in the folder .lucene_indexes
in our Java project (fig. 4.1). In the fig. 4.1, we can see there is a folder
"class_properties". This folder holds the indexes for the properties of classes.
Now inside this folder, there are two other folders, viz., "classes" and "proper-
ties". In both of these folders we can see there is a folder "1189568363". This
is nothing but a hashed value of the sparql string endpoint of the dataset
"Dbpedia". These means, in that folder it will have index files for DBPedia.
The main indexes are stored in the "properties" folder. Indexes are stored
as standard documents format of lucene. The lookup is through a direct
key search for the property’s URI. The "classes" folder is used just as an
internal check. In that an entry for a class is created if all the indexes for
its properties are created in the properties folder. Using this technique we
solve two things. Firstly, in case there is an error in creating indexes then
there is no entry in the "classes" folder. Which means the indexes will be
created again from scratch. Secondly, this helps in a fast lookup for whether

4. Approach 31

Figure 4.1: Lucene indexes stored in the project

the properties indexes have been created for the class in our index creation
algorithm which we will discuss below.

Lookup indexes
in .lucene_indexes/

properties

If index for class exists
in .lucene_indexes/

classes

JSON class properties

Delete index files for
properties

in .lucene_indexes/
properties

create new index
files for properties

in .lucene_indexes/
properties

create new class
index file

in .lucene_indexes/
classes

START search properties
of class

FALSE

TRUE

Figure 4.2: A flowchart describing the properties indexing logic in Lucene

In fig. 4.2 we have described the flowchart which explains the logic for
creating indexes. The first step is, to lookup in the .lucene_indexes/classes

4. Approach 32

folder for index entry of that particular class. If it exists we just lookup for
the properties in the .lucene_indexes/properties folder. If it does not, we
create index files and repeat the above process. Usually, this process takes
from a few seconds to a few minutes, depending upon the number of objects
of the class. It is recommended that the indexes should be created before
hand so that there is no waiting time for the response in the first time hit
of the class. For that we have created an administrative action, which will
create indexes for all the classes in the dataset. This will be discussed more
in section 4.2.1.6.

Now we will move on to index creation. There are three queries which we
execute. First we find out the common Object type properties of the class.
This is done by the query below.

1 SELECT DISTINCT ?property ?label
2 WHERE
3 { ?concept rdf:type <class_uri>.
4 ?concept ?property ?o.
5 ?property rdfs:label ?label.
6 ?property rdf:type owl:ObjectProperty.
7 ?property rdfs:range ?range.
8 FILTER(langMatches(lang(?label), 'EN'))
9 } LIMIT 25

In line 6 above, we are specifying to search for properties which are of on-
tology ObjectProperty. In line 7 we are making sure the property has some
range objects. We are not sorting this search result with an aggregate func-
tion of count so as to get the most common top 25 properties. That query
we abandonned as it was very expensive and in most of the cases never
finished executing. Therefore we opted for a simpler solution and we are
letting SPARQL deal with it. Using the concept of randomized algorithms,
this query will return in most of the cases, the most common properties and
the probabilty of getting hits for those properties will be higher. Also, notice
in line 8, that we are filtering the results for just english labels. This can be
removed and multiple langauge labels can be dealt with as discussed in the
previous sub-section.
Below is the query for getting Data type properties.

1 SELECT DISTINCT ?property ?label
2 WHERE
3 { ?concept rdf:type <class_uri>.
4 ?concept ?property ?o.
5 ?property rdfs:label ?label.
6 ?property rdf:type owl:DatatypeProperty.
7 FILTER(langMatches(lang(?label), 'EN'))
8 } LIMIT 25

This also follows a similar concept like the Object propery search. In line
6 above, we are specifying to search for properties which are of ontology
DataProperty.

4. Approach 33

Now finally, we will search for properties which are defined in the rdf schema,
i.e., the properties for which the searched class is the domain. We achieve
that using the query below.

1 SELECT DISTINCT ?property ?label
2 WHERE
3 { ?property rdfs:domain <class_uri>
4 ?property rdfs:range ?range.
5 ?property rdfs:label ?label.
6 FILTER(langMatches(lang(?label), 'EN'))
7 }

Once we have the list of properties from all three queries, we make a unique
list of them, then find out the count of the objects of those properties.
After gathering all these information we create index documents for these
properties so that next time this is looked up really fast.

4.2.1.3 Class Subclasses

This action will provide the end application with the subclasses of the in-
putted class. The base action looks like

1 GET /v1.0/builder/classes/subclasses

This action requires the following input parameters.
• dataset - SPARQL endpoint of the dataset
• class - URI of the class for which the subclasses are to be retrieved.

This action like any other standard REST API call will return a JSON
output.

The development of this action is fairly straightforward. We use the RDF
schema’s ontology for subclasses to find the subclasses of the class inputted.
This can be achieved using the following SPARQL query.

1 SELECT DISTINCT ?subclass_uri ?subclass_label
2 WHERE {
3 ?subclass_uri rdfs:subClassOf <class_uri>.
4 ?subclass_uri rdfs:label ?subclass_label.
5 FILTER(langMatches(lang(?subclass_label), 'EN'))
6 }

If you see line 3, we find classes which are subClassOf the searched class.
The subclasses are defined using this standard RDFS ontology. In line 4 we
assert for just English labels. This can be removed and other languages can
also be handled easily.
Below, we can see a sample output of this action, when we look for subclasses
of the class "Artist" in DBPedia.

1 {
2 "dataset": "http://dbpedia.org/sparql",
3 "label": "artist",
4 "subclasses": [

4. Approach 34

5 {
6 "label": "actor",
7 "uri": "http://dbpedia.org/ontology/Actor"
8 },
9 {

10 "label": "comedian",
11 "uri": "http://dbpedia.org/ontology/Comedian"
12 },
13 {
14 "label": "comics creator",
15 "uri": "http://dbpedia.org/ontology/ComicsCreator"
16 },
17 {
18 "label": "fashion designer",
19 "uri": "http://dbpedia.org/ontology/FashionDesigner"
20 },
21
22],
23 "uri": "http://dbpedia.org/ontology/Artist"
24 }

4.2.1.4 Class Examples

This action will provide the end application with some example objects of
the inputted class. The base action looks like

1 GET /v1.0/builder/classes/examples

This action requires the following input parameters.
• dataset - SPARQL endpoint of the dataset
• class - URI of the class for which the example objects are to be re-

trieved.
• limit - This is the number of example objects which has to be retrieved.

By default we have set this to 5.
This action like any other standard REST API call will return a JSON
output.

The reason this action was developed was because we felt, it adds a little
bit of usefulness to the user as he can get a simple overview of what kind
of objects are there in the class(es) they are exploring. Also, the user can
know the kind of objects that are present in the subclasses of the class , as
essentially, the subclass is a also a class. This method also returns the total
number of objects for the class.
The following is the output obtained when this API is called for the class
"Artist" in DBPedia

1 {
2 "dataset": "http://dbpedia.org/sparql",
3 "label": "artist",
4 "sample_objects": [

4. Approach 35

5 {
6 "label": "Aaron Lines",
7 "uri": "http://dbpedia.org/resource/Aaron_Lines"
8 },
9 {

10 "label": "Alex Reid (actress)",
11 "uri": "http://dbpedia.org/resource/Alex_Reid_(actress)"
12 },
13 {
14 "label": "Alma Cogan",
15 "uri": "http://dbpedia.org/resource/Alma_Cogan"
16 },
17 {
18 "label": "Andrew Foley (writer)",
19 "uri": "http://dbpedia.org/resource/Andrew_Foley_(writer)"
20 },
21 {
22 "label": "Andy Park (comics)",
23 "uri": "http://dbpedia.org/resource/Andy_Park_(comics)"
24 }
25],
26 "total_objects": 96300,
27 "uri": "http://dbpedia.org/ontology/Artist"
28 }

We can see in the line 4, that "sample_objects" contains an array of sample
objects for the class. The count of the objects is returned by "total_objects"
as can been seen in the line 26.

The logic for retrieving the objects is pretty straightforward. The fol-
loaing SPARQL query is used to retrieve the sample objects.

1 SELECT distinct ?object ?label
2 WHERE {
3 ?object rdf:type <class_uri>.
4 ?object rdfs:label ?label.
5 FILTER(bound(?label) && langMatches(lang(?label), "EN"))
6 }
7 LIMIT <limit>

Similarly, the "total_objects" is generated by executing a SPARQL query
with the COUNT aggregate function.

4.2.1.5 Objects Search

This action will return a list of objects matching the search string. The base
action looks like

1 GET /v1.0/builder/objects/

This action requires the following input parameters.
• dataset - SPARQL endpoint of the dataset
• search - Search string which will match the object

4. Approach 36

• classes - This will contain comma separated classes. Basically, the
objects can be an object of any of these classes

• for_class - This is the URI of the class for which the the searched
object is an object in the RDF triple. In the triple ?s ?p ?o, ?s is the
class here and ?o the returned object.

• for_property - This is the URI of the property. In a triple ?s ?p ?o, ?o
is the object which will be returned and ?p the property’s URI.

This action like any other standard REST API call will return a JSON
output.

This action is very similar to the Classes search in section 4.2.1.1. The
output returned is similar to that of classes search. This action is useful for
adding filters in properties from the Front end application, as the user can
do free text search of objects. Using this action you can do a search like

1 ?class_object rdf:type ?for_class.
2 ?class_object ?for_property ?object.

In this you will search for ?object such that they are the objects of predicate
for_property and subject a class object of for_class.

4.2.1.6 Properties Index creation

This action will initiate creation of indexes of properties of all classes of a
dataset. Its base action is as follows

1 GET /v1.0/builder/properties/indexes/create

This action requires the following input parameters.
• dataset - SPARQL endpoint of the dataset

This is the same index creation process which was explained in detail in
section 4.2.1.2. We have decided to have an API for this action, as then it
requires pretty much no knowledge and software installation for the admin-
istrator to execute this functionality. It usually takes about a few hours to
create indexes for all the classes of a dataset.

4.2.2 RDF2Any Conversion

Our main motivation was always to provide an easier way to extract data
from RDF datastores. Right now users do not have that much flexibility and
in most of the cases, he has to download the whole dataset to the format
he wants. What we wanted was an added flexibility, so that can user can
download smaller sets of data based on what he wants to filter. We would
want the user to abstract data in the format he wants. We would want a state
of the art RDBMS conversion. We now will explain in detail our approach
and implementation in the following subsections.

But before we go to that, we will explain a bit on our approach on how
to get subsets of a dataset.The simplest way of course is through SPARQL.

4. Approach 37

There are standard SPARQL result set serializations recommendations by
W3C. But these serialization techniques are very one dimensional, and they
just represent the data as it is returned in the tabular format. We therefore
figured out a simpler technique which does not require the user to convert
the whole dataset. We will approach with conversion of objects of just one
class for the time being. And to find the objects we will use a SPARQL query
which will return those objects. So we need the following three parameters
to achieve this

• dataset - SPARQL endpoint of the dataset
• for_class - URI of the objects of the class which will be abstracted.
• query - This is a SPARQL query which returns the URIs of the obejct

of the class which has to be abstracted. It is of the format
1 SELECT ?concept WHERE{
2
3
4 }

Here, the variable ?concept will contain the URIs of the objects of the
class.

This kind of exploration is a prototype. There is a flaw in it. From the
definitions of the parameters above we notice that we can explore just one
class. This can be easily rectfied by passing comma separated values of
classes and an array of their respective queries. For lossless sending of these
parameters, it is recommended to send them as Base64 encoded strings.

Another notable thing which we implemented for all the Conversion file
downloads is we are not having a Java return type File. Instead, we are
creating an Output buffer stream, which creates a file download and we
write binary data on the file on the fly. This means, we do not need to
store the whole file temporarily in the main memory of the server reducing
the unnecessary slug size of the system. So our conversions are swift and
extremely memory efficient.

4.2.2.1 CSV Conversion

CSV as we know stands for Comma separated values. CSV files are very
useful in uploading data to other formats like excel sheets, databases, etc.
In this we built an API action using which the user can download The RDF
data in CSV. The base API looks like

1 GET /v1.0/convert/csv-converter.csv

This API action requires the following parameters
• dataset - SPARQL endpoint of the dataset
• for_class - URI of the objects of the class which will be abstracted.

4. Approach 38

• query - This is a SPARQL query which returns the URIs of the obejct
of the class which has to be abstracted.

• properties - Comma separated URIs of properties which need to be
extracted. If all the properties are required then simply "all" can be
passed.

The API returns a .csv file as an output. There are two kinds of outputs
available from this API action. One is the traditional one for SPARQL query
Result Set. It returns the data in a simple tabular format in which the
headers are the variable names. For this action it is not required to pass the
variables "for_class" and "properties".
e.g., Let us take a simple a simple SPARQL query

1 SELECT DISTINCT ?s WHERE {
2 ?s ?p ?o.
3 } LIMIT 100

This will return a CSV output
1 rowID,s
2 1,http://www.w3.org/1999/02/22-rdf-syntax-ns#Property
3 2,http://www.openlinksw.com/schemas/virtrdf#QuadMapFormat
4 3,http://www.openlinksw.com/schemas/virtrdf#QuadStorage
5

We notice in line 1 above that there are two headers. First is rowID which is
nothing but a unique integer which is the row number. The other ones will
be the variable names of the SPARQL query. In this case it is s.

Now let us move on to the exploration of Class objects. For such cases, the
header items become various parameters, like object URI, object name, then
individual headers for object properties which need to be downloaded. Check
out the output below which is a CSV convert of the objects of Actors from
DBPedia. In this case we are just getting a few properties, viz., birth_date,
birth_place

1 rowID,rdfsMember,uri,name,birth_date,birth_place
2 1,http://dbpedia.org/resource,

→˓ http://dbpedia.org/resource/Alex_Reid_(actress), Alex Reid
→˓ (actress), 1980-12-23+02:00,
→˓ http://dbpedia.org/resource/United_Kingdom;
→˓ http://dbpedia.org/resource/Cornwall;
→˓ http://dbpedia.org/resource/Penzance

3 2,http://dbpedia.org/resource,
→˓ http://dbpedia.org/resource/Henri_Cogan,Henri Cogan,
→˓ 1924-09-13+02:00, http://dbpedia.org/resource/Paris

4 ...

We notice that there are 4 headers apart from the properties birth_date and
birth_place. rowID is similar to before. rdfMember returns the base URI of
the returned object’s URI. uri returns the URI of the object. name returns
the name of the object. This for now is in English. This can be configured
later to return in the language the user wants. The rest are simply properties

4. Approach 39

which return the property of that object. If for some case (like in line 1
birth_place) there are multiple properties for that property of that object,
then those properties are separated by a special character ‘;’.

Implementing multiple classes in this case is tricky as CSV is a rigid
tabular format and it does not give the flexibility of having different datas-
tructures for different rows. The most optimal solution will be a download of
a .zip file which contains multiple csv files, each for the objects of different
class.

4.2.2.2 RDB Conversion

In RDB conversion, the resultset is converted into SQL scripts such that
they can be uploaded to a RDBMS database. The Base action of this API
looks like

1 GET /v1.0/convert/rdb-converter.sql

This API action requires the following parameters
• dataset - SPARQL endpoint of the dataset
• for_class - URI of the objects of the class which will be abstracted.
• query - This is a SPARQL query which returns the URIs of the obejct

of the class which has to be abstracted.
• properties - Comma separated URIs of properties which need to be

extracted. If all the properties are required then simply "all" can be
passed.

The API returns a .sql file as an output. In this output file, standard
SQL upload scripts are written which has been tested out with PostgreSQL
database. We opted for postgreSQL because it is usually the number one
choice for open source databases by Enterprise applications.

Like the CSV convert, this also deals with two kinds of converts. The
first is a simple convert of the SPARQL query result set. The other is that
of the class objects. Check the following query

1 SELECT DISTINCT ?subject WHERE {
2 ?subject ?predicate ?object.
3 } LIMIT 100

This gives the following output.
1 DROP TABLE IF EXISTS things;
2 CREATE TABLE things
3 (
4 ID int,
5 subject varchar(1000),
6 PRIMARY KEY ID
7);
8 INSERT INTO things VALUES(1,

→˓ 'http://www.openlinksw.com/formats#default-iid');

4. Approach 40

9 INSERT INTO things VALUES(2,
→˓ 'http://www.openlinksw.com/formats#default-iid-nullable');

10 INSERT INTO things VALUES(3,
→˓ 'http://www.openlinksw.com/formats#default-iid-nonblank');

11 ...

This output is pretty much tabular. A table things is created with columns
for the variables in the SPARQL query. In this case, its subject which we can
see is defined in line 5. All the rows are converted to a simple insert script
to the table things which we can see is there in lines 8-10.

The class convert was challenging. We built a state of the art conver-
sion to RDBMS systems which is powerful than the existing ones. It deals
with normalizations very smartly. The conversion process starts with first
evaluating the properties which have to be extracted for the class. These
properties are passed through the API. If "all", is passed then the properties
are retrieved from the class properties API from section 4.2.1.2. Once the
properties are there, there are some useful information available with the
properties which helps in normalization. The class properties API returns
also whether the property has multiple objects for some node or not. That
means if it has then, it is a one-to-many relationship in terms of RDBMS.
Otherwise it is a one-to-one relationship. Based on this the table creation
scripts are written. First, there will be a table for the class. All class ta-
bles will have columns id, uri, and name. The main class table will have
other columns which is basically the one-to-one properties. If its a Data type
property, then it will be a text/integer field based on the data type. If its
an Object type property, then it will be an integer foreign key linking to
another class table. So based on this various class tables which are going to
be required in this context will be created. This will be clear with a small
example. In the following script, we are retrieving the class objects of Co-
median from DBPedia with only three properties viz., alias, abstract and
birthplace.

1 -- START table creation scripts properties pointing to other classes
2
3 DROP TABLE IF EXISTS places CASCADE;
4 CREATE TABLE places
5 (
6 id int PRIMARY KEY,
7 uri varchar(300),
8 name text
9);

10
11 -- END table creation scripts properties pointing to other classes
12
13 -- START Table creation section for main class table
14
15 DROP TABLE IF EXISTS comedians CASCADE;
16 CREATE TABLE comedians
17 (

4. Approach 41

18 id int PRIMARY KEY,
19 uri varchar(300),
20 name text,
21 alias text
22);
23
24 -- END Table creation section for main class table
25
26 -- START table creation scripts for normalized property tables
27
28 DROP TABLE IF EXISTS comedianhasabstracts CASCADE;
29 CREATE TABLE comedianhasabstracts
30 (id int PRIMARY KEY,
31 comedian_id int,
32 hasabstract text,
33 hasabstractLang varchar(6)
34);
35
36 DROP TABLE IF EXISTS comedianbirthplaces CASCADE;
37 CREATE TABLE comedianbirthplaces
38 (id int PRIMARY KEY,
39 comedian_id int,
40 birthplace_id int REFERENCES places(id)
41);
42
43 -- END table creation scripts for normalized property tables

There are three sets of tables which will be created. First, it will be the
related class tables (In this case places in line 4). Then the main class table
(In this case comedians in line 16). After that the normalized class table
(comedianabstracts and comedianbirthplaces in lines 29 and 37). The order
of these table creation scripts are important, because the normalized class
tables will reference (will have foreign keys referencing there) the main class
tables and also some related class tables. The main class table might refer-
ence some related class tables similarly. So it is important that those tables
exist before hand as the referencing is done through foreign key constraints
and if the table does not exist it will throw a constraint error.

Now lets check the properties. Since there are no instances for which
the class Comedian can have two aliases, it is a one-to-one relationship.
Therefore it is defined in the table comedians in line 21. This definition is
text because alias is defined as a Data type property. Now abstract is also
defined as a Data type property but there are some instances of objects
for which there are multiple abstracts. Therefore, to normalize this, another
table comedianabstracts has been created which references the table come-
dians (Line 29). The property abstract has a range Language Literal. The
RDBMS tools which we came across do not have specific methods to store
language separately. We came up with a solution of simply having a small
string column for language for such properties. Hence, you can see in line 33,
along with the column hasabstract there is another column hasabstractLang

4. Approach 42

which will store the language as a string. Now coming to the final property,
i.e., birthplace, which is an Object type property. This property has range
Place, so a table places has been defined (Line 4). Since its an Object type
property, it will have a foreign key referencing the table places. Once the
tables has been created the actual data insertion scripts are written.

1 --1. ##
2 INSERT INTO comedians (ID, uri, name) VALUES (1,

→˓ 'http://dbpedia.org/resource/Tom_Wrigglesworth','Tom
→˓ Wrigglesworth');

3 INSERT INTO comedianhasabstracts(id,comedian_id,hasabstract,
→˓ hasabstractLang) VALUES(1, 1, 'Tom Wrigglesworth is an English
→˓ stand-up comedian He was born and raised in Sheffield, South
→˓ Yorkshire. In 2009 he was nominated for the main Edinburgh
→˓ Comedy Award (formerly the Perrier awards) at the Edinburgh
→˓ festival.', 'EN');

4 UPDATE comedians SET alias = 'Thomas' WHERE id=1;
5 INSERT INTO places(id, uri, name) VALUES (1,

→˓ 'http://dbpedia.org/resource/Sheffield', 'Sheffield');
6 INSERT INTO comedianbirthplaces(id,comedian_id,birthplace_id) VALUES(1,

→˓ 1, 1);
7 INSERT INTO places(id, uri, name) VALUES (2,

→˓ 'http://dbpedia.org/resource/South_Yorkshire', 'South
→˓ Yorkshire');

8 INSERT INTO comedianbirthplaces(id,comedian_id,birthplace_id) VALUES(2,
→˓ 1, 2);

9
10 --2. ##
11 INSERT INTO comedians (ID, uri, name) VALUES (2,

→˓ 'http://dbpedia.org/resource/Charles_Firth_(comedian)','Charles
→˓ Firth (comedian)');

12 INSERT INTO comedianhasabstracts(id,comedian_id,hasabstract,
→˓ hasabstractLang) VALUES(2, 2, 'Charles Henry Burgmann Firth is
→˓ an Australian comedian, best known as a member of The Chaser
→˓ productions CNNNN and The Chaser''s War on Everything. He is the
→˓ brother of Verity Firth who was a Minister for the Labor
→˓ Government of New South Wales.', 'EN');

13
14 --3. ##
15 INSERT INTO comedians (ID, uri, name) VALUES (3,

→˓ 'http://dbpedia.org/resource/Charlie_Callas','Charlie Callas');
16 INSERT INTO comedianhasabstracts(id,comedian_id,hasabstract,

→˓ hasabstractLang) VALUES(3, 3, 'Charlie Callas ', 'EN');
17 INSERT INTO comedianhasabstracts(id,comedian_id,hasabstract,

→˓ hasabstractLang) VALUES(4, 3, 'Charles ', 'DE');
18 INSERT INTO comedianhasabstracts(id,comedian_id,hasabstract,

→˓ hasabstractLang) VALUES(5, 3, 'Charlie Callas (20 de diciembre
→˓ de 1927 - 27 de enero de 2011) ', 'ES');

19 INSERT INTO comedianhasabstracts(id,comedian_id,hasabstract,
→˓ hasabstractLang) VALUES(6, 3, 'Charlie Callas ', 'FR');

20 INSERT INTO comedianhasabstracts(id,comedian_id,hasabstract,
→˓ hasabstractLang) VALUES(7, 3, 'Charlie Callas (Brooklyn, 20 de
→˓ dezembro de 1924 - 27 de janeiro de 2011) foi um , 'PT');

4. Approach 43

21 INSERT INTO comedianhasabstracts(id,comedian_id,hasabstract,
→˓ hasabstractLang) VALUES(8, 3, 'Charlie Callas , 'PL');

22 UPDATE comedians SET alias = 'Callias, Charles' WHERE id=3;
23 INSERT INTO places(id, uri, name) VALUES (3,

→˓ 'http://dbpedia.org/resource/Brooklyn', 'Brooklyn');
24 INSERT INTO comedianbirthplaces(id,comedian_id,birthplace_id) VALUES(3,

→˓ 3, 3);
25

In the above example, we are continuing with the Comedian case and have
shown 3 sample objects. First it always creates an INSERT script to insert
data into the main class table. In this case its comedians (Line 2). An impor-
tant aspect in these scripts, are the retrieving of correct foreign keys. This
is done by a complex HashMap which stores the primary keys for objects of
each table. First it looks up whether the object uri exists in the hashmap.
If it exists then the primary key is retrieved otherwise a new one is created.
Now coming back to the conversion, the algorithm for that is, it goes to each
property to be dealt and just writes scripts for it. If it is for a new row entry
then an INSERT script is created (Line 3). Now if it comes to a property
which is a column of the main table, then an UPDATE script is written to
modify the entry of the table (Line 4). This approach of writing UPDATE
scripts is actually inefficient and increases the number of lines of scripts for
the downloaded file. But it reduces the space complexity of the algorithm as
no lookup is required to find out which are the properties for that class. It
is just dealt as it comes. Also, it is notable how different languages are dealt
with for Language literals (Lines 16 and 17). This dealing of languages are
not present in the existing RDBMS conversions.

In this section we saw, how we achieved a powerful state-of-the-art RDF
to RDB conversion in which its not required to input the whole dataset.
One minor flaw we can notice is that we are dealing with just one main class
(In the above example it was the class Comedian). Now this can be easily
improved by extending the same principle for multiple classes. There will be
no changes required in the existing algorithm to achieve that.

4.2.2.3 JSON Conversion

In JSON conversion the result set is converted into JSON output. The Base
action of this API looks like

1 GET /v1.0/convert/json/

This API action requires the following parameters
• dataset - SPARQL endpoint of the dataset
• for_class - URI of the objects of the class which will be abstracted.
• query - This is a SPARQL query which returns the URIs of the obejct

of the class which has to be abstracted.

4. Approach 44

• properties - Comma separated URIs of properties which need to be
extracted. If all the properties are required then simply "all" can be
passed.

• json_output_format - can have values {"virtuoso", "sesame"}. This
determines the JSON serialization structure based on this value. By
default its "virtuoso" which is the W3C recommended one. When doing
a convert for class objects, it does not matter which value is passed in
this parameter.

Like all standard REST API, this will return a JSON output.
JSON coversion becomes very important in this age of cloud comput-

ing. JSON is the de facto output format for REST API calls. Moreover it
is directly converted to a Hash Map in any language it is imported to, re-
moving the complicated programming which the programmers need to do
for parsing. They can just do key lookups instead of parsing to get values
in JSON. Because of such reasons we focused on providing many variants of
JSON convert so that the user is comfortable in accessing the data. They
are the official W3C format for SPARQL query result set, Sesame12 format
for SPARQL query result sets and an improved conversion to JSON format
for class convert which is an improvement to the JSON-LD recommenda-
tion. One thing which has to be noted for JSON output is that, it is not
practically recommended to have larger JSON files. The reason behind that
is, JSON files are loaded completely into the main memory and it if its large
then the software can run out of memory and becomes sluggish. For larger
outputs, it is recommended to have XML output so that one block at a time
can be read in that.

The W3C recommended conversion is a lightweight and neat format for
getting SPARQL query result sets. Let us take the following query

1 SELECT DISTINCT ?concept ?label WHERE {
2 ?concept rdf:type dbpedia-owl:Comedian.
3 ?concept rdfs:label ?label.
4 FILTER(langMatches(lang(?label), "EN"))
5 } LIMIT 20

This will give us the following output format.
1 {
2 "head": {
3 "vars": [
4 "concept",
5 "label"
6],
7 "link": []
8 },
9 "results": {

10 "bindings": [
11 {

12http://rdf4j.org/

4. Approach 45

12 "concept": {
13 "value":

→˓ "http://dbpedia.org/resource/Tom_Wrigglesworth",
14 "type": "uri"
15 },
16 "label": {
17 "value": "Tom Wrigglesworth",
18 "xml:lang": "en",
19 "type": "literal"
20 }
21 },
22
23]
24 }
25 "distict": true,
26 "ordered": true,
27 "time_taken": 0.088
28 }

We notice in line 2 that there is a key vars which contains an array of the
SPARQL variables. The results are inside the key bindings (line 10) as an
array of hashmaps. The result rows are a hashmap with keys for variable
names (lines 12 and 16). This means the lookup for these values is very
easy. Each result binding value will have a key type which can have values
{"uri","literal", "typed-literal"} (lines 14 and 19). The values are there in the
key value (lines 13 and 17). If it is a language literal then a new key is added
xml:lang (line 18) which contains the language.

Now the same query will give the following output if we want the one
provided by Sesame servers.

1 {
2 "sparql": {
3 "head": {
4 "variable": [
5 {
6 "@name": "concept"
7 },
8 {
9 "@name": "label"

10 }
11]
12 },
13 "@xmlns": "http://www.w3.org/2005/sparql-results#"
14 },
15 "results": {
16 "result": [
17 {
18 "binding": [
19 {
20 "@name": "concept",
21 "uri":

→˓ "http://dbpedia.org/resource/Tom_Wrigglesworth"
22 },

4. Approach 46

23 {
24 "@name": "label",
25 "literal": {
26 "#text": "Tom Wrigglesworth",
27 "@xml:lang": "en"
28 }
29 }
30]
31 },
32
33]
34 }
35 }

We notice that this version is not that efficient and seems to be a bit heavier
than the official recommended version. The variables are set as an array of
hashmaps instead of a simple array of strings (line 4). Also in the results,
it is an array of hashmap for each row instead of being a hashmap for each
row (line 18). This means, if I want to access the value of a variable, say
in this case "concept" in a row, I need to iterate through it and match
whichever has the value of "@name" , "concept" then I will get the value
(Line 20). But we won’t have this situation with the official W3C version
as in that each result row is a hashmap with the variable names as keys.
All I need to do is lookup the key with "concept". Another issue with this
format is the the nomenclature of keys. We can see a lot of keys starting with
special characters, i.e., "@" and "#". The JSON format is made primarily for
JavaScript language and in it we have symbols to access the keys. eg, if the
key is "name" I can access it by row.name. But if the key is "@name" then I
cannot access by row.@name because @name is not a valid symbol like name.
In such case I need to define a string to access it, ie I need to do something
like row["@name"]. Now the difference between a symbol and a string is that
a symbol in immutable. This means if I create two symbols with the value
name then both of them will have the same object ids and two objects won’t
be instantiated. Now this is not the case for strings. Now imagine the key
"@name" being accessed like row["@name"] in a loop of 1000 records. 1000
String objects will be instantiated which is extremely inefficient.

Let us now check out the new suggested output format which we came
up with for exploring object instances of classes. We will again go with the
same Comedian class of DBPedia. We will just abstract the properties alias,
abstract and birthplace. This will give the following output

1 {
2 "classes": [
3 {
4 "label": "comedian",
5 "properties": [
6 "alias",
7 "birth_place",
8 "abstract"

4. Approach 47

9],
10 "uri": "http://dbpedia.org/ontology/Comedian"
11 }
12],
13 "properties": {
14 "abstract": {
15 "range": {
16 "label": "langString",
17 "uri":

→˓ "http://www.w3.org/1999/02/22-rdf-syntax-ns#langString"
18 },
19 "label": "has abstract",
20 "type": "data",
21 "uri": "http://dbpedia.org/ontology/abstract"
22 },
23 "alias": {
24 "range": {
25 "label": "string",
26 "uri": "http://www.w3.org/2001/XMLSchema#string"
27 },
28 "label": "alias",
29 "type": "data",
30 "uri": "http://dbpedia.org/ontology/alias"
31 },
32 "birth_place": {
33 "range": {
34 "label": "place",
35 "uri": "http://dbpedia.org/ontology/Place"
36 },
37 "label": "birth place",
38 "type": "object",
39 "uri": "http://dbpedia.org/ontology/birthPlace"
40 }
41 },
42 "dataset": "http://dbpedia.org/sparql",
43 "objects": [
44 {
45 "class": "http://dbpedia.org/ontology/Comedian",
46 "label": "Tom Wrigglesworth",
47 "properties": {
48 "abstract": [
49 {
50 "xml_lang": "en",
51 "value": "Tom Wrigglesworth is an English

→˓ stand-up comedian He was born and raised in Sheffield, South
→˓ Yorkshire. In 2009 he was nominated for the main Edinburgh
→˓ Comedy Award (formerly the Perrier awards) at the Edinburgh
→˓ festival.",

52 "type": "literal"
53 }
54],
55 "alias": [
56 {
57 "value": "Thomas",

4. Approach 48

58 "type": "literal"
59 }
60],
61 "birth_place": [
62 {
63 "value":

→˓ "http://dbpedia.org/resource/Sheffield",
64 "type": "uri"
65 },
66 {
67 "value":

→˓ "http://dbpedia.org/resource/South_Yorkshire",
68 "type": "uri"
69 }
70]
71 },
72 "uri": "http://dbpedia.org/resource/Tom_Wrigglesworth"
73 },
74 ...
75]
76 }

For our format, we are going with the standard naming conventions for
keys of JSON output. We are providing spider case13 key values. First, we
specify the classes with the key classes (line 2). This will contain an ar-
ray of Hashmaps with more information on the classes which are retrieved.
Right now only one has been implemented, and in future this can easily
be extended to include multiple classes in future. Now coming back to the
classes, here we can see some information of the Comedian class, like the
uri (line 10), the name/label (line 4) and the properties which will be ex-
tracted (line 5). The properties are just an array of strings. Now there is a
key properties which have more information of all the properties which are
being extracted (Line 13). We notice there are information on each prop-
erty’s range, uri, etc. We have a universal array for properties, to avoid data
redundancy. Multiple classes can have the same property so to avoid defin-
ing them more than once, we have a separate array for all the properties.
The results are in the key objects as an array of objects (Line 43). Each
object will have a key, class (Line 45) which will contain the URI of the
class. It will also have keys for label (line 46) and uri (line 72). Each object
will have a key properties which will contain the hashmap of the properties
(Line 47) with the property identfier as the key for simpler lookup. Each
property will have multiple values as the same property can have multiple
values, so an array as value (lime 49). Each value is similar to that of the
W3C recommendation with a key type, value. The only modification added
is the key xml:lang has been replaced to xml_lang so that a symbol can be
defined for that as xml:lang is not a valid symbol in most of the languages.

13spider case variables are those in which all the characters are lowercase and tokens
are separated by underscores.

4. Approach 49

Because of the same reason we are not using the character ‘@’ to initialize
the variables (here the property names), as a symbol cannot be formed in
most languages starting with ‘@’.

Thus, with this new format we were able to achieve the following
• Removed data redundancy by adding a unique array which contains

all the properties.
• Added more information on the properties like its URI, range, etc.
• Made the keys standard for JSON so that symbols can be created

rather than strings to access the corresponsing values
• Objects have a dynamic structure which one can expect from the XML

serialization.

4.2.2.4 Generic Conversion

Now for the final Conversion API. This is called Generic Conversion because
in this the user can specify with some parameters, the output format he
wants. He can abstract the data to his own kind of XML, CSV, TSV and
pretty much any kind of serialization. The Base action of this API looks like

1 GET /v1.0/convert/configured-convert

• dataset - SPARQL endpoint of the dataset
• for_class - URI of the objects of the class which will be abstracted.
• query - This is a SPARQL query which returns the URIs of the obejct

of the class which has to be extracted.
• properties - Comma separated URIs of properties which need to be

abstracted. If all the properties are required then simply "all" can be
passed.

• variable_dictionary - this will define the variables for the property
uris. The definitions are comma separated.

• header - This will constitute the head of the serialization output. It
will be printed once and is static

• body - This will constitute the body of the serialization output. This
part will be looped with every object of the resultset

• footer - This will constitute the footer of the serialization output. It
will be printed once in the end and is static.

We got the main idea to develop an API like this from the language
XSPARQL[AKKP+08]. But the major problem with XSPARQL is that the
user still needs to know two languages, viz., SPARQL and XQuery. We
figured, if just use a few programmable items like for each loop, if condition
and print we can print pretty much all kinds of serialization.

So to describe your own generic output format you need to pass four
parameters.

4. Approach 50

1. variable_dictionary - this will define the variables for the property
uris. The variable definitions are comma separated. The following is
how the variable dictionary should be passed.

1 variable_name1::property_uri1,variable_name2::property_uri2

2. header - This will constitute the head of the serialization output. It
will be printed once in the top and is static. This is a simple string.
Right now we do not support any variables in the header.

3. body - This will constitute the body of the serialization output. This
part will be looped with every object of the resultset. In the body we
have our own scripting language with three programmable items. For
any programmable part, it has to be excaped using

1 $[programmable_part_here]

• print - this is a simple print of a variable. variable names, URI
and NAME are reserved for uri and name of the object. OB-
JECT_COUNTER returns a unique integer counter for the ob-
ject. The print syntax is as follows. It should begin with "="
followed by the variable name.

1 $[=variable_name]

For language literals the language and text can be sepa-
rately printed. textitvariable_name.text gives the text and vari-
able_name.lang returns the language.

• if condition - This is basically an assertion check. It checks
whether the variable value exists or not. It is used to mainly
check if the property exists.

1 $[if property_variable_name] some body here $[end]

• for each loop - This loops over the values of a particular property.
1 $[for property : property_variable_name]
2 some body here
3 $[end]

4. footer - This will constitute the footer of the serialization output. It will
be printed once in the end and is static. Right now, no programmable
items are supported in the footer.

So the main programmable elements will be in the body part of the input
parameter. Even though we have just 3 programmable items, it is not that
easy to implement. We went back to the basics of language parsers. We
built our own proprietary language parser without using any libraries. The
basic logic is that it parses the body text to an expression tree[C+86]. Now
specific to our case, it parses to an expression tree of Body chunks. We have
defined a BodyChunk class which looks like

4. Approach 51

1 Class BodyChunk{
2 String type;
3 String value;
4 String additionalValue;
5 List<BodyChunk> bodyChunks;
6 }

type has values "text","condition","variable","loop". When the type is "text",
then it means that it is a simple BodyChunk and the value will be printed.
When it has type "condition", then it will first evaluate the condition which
will be stored in value field. If condition satisfies, then the list of bodyChunks
will be evaluated. If the type is "variable", then it is the print part. It will
print the variable. And finally if the type is "loop", then it will loop through
the bodyChunks inside it till the condition satisfies.

Let us now work with an example to display how a generic output can
be abstracted. We will try to abstract some object instances of the Class
Comedian of DBpedia. For this example We will consider just two properties,
say alias and abstract. So we will pass the following variable_dictionary

1 abstracts :: http://dbpedia.org/ontology/abstract, alias ::
→˓ http://dbpedia.org/ontology/alias

We now pass the header
1 <?xml>
2 <comedians>

And the body
1 <comedian uri="$[=URI]" rowID="$[=OBJECT_COUNTER]">
2 <name>$[=NAME]</name>
3 $[if alias]<alias>$[=alias]</alias>$[end]
4 $[for abstract:abstracts]
5 <description language="$[=abstract.lang]">
6 $[=abstract.text]
7 </description>
8 $[end]
9 </comedian>

And finally the footer
1 </comedians>

Now our propreitary language parser will parse the body text and will
convert it into an expression tree with body chunks (fig. 4.3). After this, these
body chunks will be recursively evaluated to give the following output.

1 <?xml>
2 <comedians>
3 <comedian

→˓ uri="http://dbpedia.org/resource/Charles_Firth_(comedian)"
→˓ row_id="1">

4 <name>Charles Firth (comedian)</name>
5 <description language="en">
6

4. Approach 52

text

<comedian uri="

variable

URI

text

" row_id="

variable

OBJECT_COUNTER

text

">
<name>

variable

NAME

text

<name>

condition

alias

text

<alias>

variable

alias

text

</alias>

loop

abstracts
abstract

text

<description
language="

variable

abstract.lang

text

">

text

</description>

variable

abstract.text

Figure 4.3: Example Body text of Generic convert parsed into Body Chunks
expression tree

4. Approach 53

7 </description>
8 </comedian>
9 <comedian uri="http://dbpedia.org/resource/Charlie_Callas"

→˓ row_id="2">
10 <name>Charlie Callas</name>
11 <description language="en">
12 ...
13 </description>
14 <description language="de">
15 ...
16 </description>
17 <description language="es">
18 ...
19 </description>
20 ...
21 </comedian>
22
23 </comedians>

Notice for the first comedian (line 2), there is now alias printed. It is because
we added the if condition in the body (line 3 of body). Also notice how the
for each loop iterates through each abstract (lines 11-19).

In this Conversion we achieved
• Built a proprietary scripting language and parser which has a few

programmable items.
• Any kind of serialization which does not require some memory storage

(Like storing of foreign key values for RDBMS serialization), can be
implemented using these features.

4.3 Query Builder GUI Tool
The main motivation for Building this GUI tool was to allow users to explore
the RDF data. Using this, the user can abstract the data in the format he
wants by using UI tools. All the information for this exploration is provided
by the Exploration and Conversion API which we described in the previous
section. Technologies used - he following technologies/libraries have been
used to develop the GUI tool

• Ruby on Rails - The whole GUI tool was built as a web application
using the framework Rails14. The server side scripting language used is
Ruby. This was preferred as we wanted to show some interoperability
as we are consuming actions from a Java server. Also, development of
Ruby on Rails is very fast compared to other web frameworks.

• Javascript - Javascript is the standard client side scripting language
for browsers.

14http://rubyonrails.org/

4. Approach 54

• Coffescript - Coffescript15 is a langauge in which your Ruby code is
converted to Javascript from the server. This is useful as your code
size becomes smaller and it becomes more modular.

• JQuery16 - This is a javascript library which simplifies various func-
tions which you would like to achieve using javascript.

• Bootstrap17 - This is a CSS library published by Twitter. Using this
you can easly build responsive and beautiful UI by already including
the CSS items available.

• Httparty18 - This is a gem available for Rails applications, using
which you can call HTTP requests from within the application. We
use this to call the APIs from our Exploration and Conversion API
server.

In the following sub-sections we will describe the salient features of the
Query Builder GUI tool and why we developed those features.

4.3.1 Selecting datasets

As a user, the first step to explore data is to find a datastore. The datastores
usually build a small GUI where a user can execute SPARQL queries. e.g.,
DBPedia has a SPARQL query editor at http://dbpedia.org/sparql. It is a
simple UI where a user can just input the SPARQL query and the output
format he requires (fig. 4.4).

We have given the user the option to select any Datastore which he wants
to explore. We have provided with a drop down list from which the user can
select the Datastore (fig. 4.5). Please note that right now its showing only
"DBpedia", but more datasets can be added here. There is no hardcoding
done in any of our implementations. This addition is very simple. We have
a method which returns pairs of Display value of dataset, and SPARQL
endpoint of the dataset. Any dataset with a SPARQL endpoint can be added
by the developer of the tool like this so that it is available to the user. Now
we will proceed to the next step.

4.3.2 Exploring classes

Finding out classes which someone wants to explore can become messy. In
SPARQL a user has to know the exact URI to get more information of the
class. We have implemented a simple searchbox where the user can search
the Class which he wants to explore. Fig. 4.6 shows how the search results
look like. It is a responsive design with auto-complete and the results gets
updated with the change of search value in the textbox. We use the Classes

15http://coffeescript.org/
16http://jquery.com/
17http://getbootstrap.com/
18https://github.com/jnunemaker/httparty

4. Approach 55

Figure 4.4: DBpedia’s SPARQL Query Editor

Figure 4.5: Query Builder GUI : Selecting datasets

search API (section 4.2.1.1) to retrieve the classes matching the searched
string.

After a class is clicked some information about the class is displayed (fig.
4.7). Five instances of the objects of the class are displayed. Also, the total
number of objects of the class is displayed so that the user knows how many
objects the class has. In this example it is around 96.3K. There is also a URI

4. Approach 56

Figure 4.6: Query Builder GUI : Searching classes

viewer which is opened whenever I click on any of the objects or I click the
button for "More details on <class_name>". The URI viewer opens the uri
in the same application without redirecting to the uri so that the user does
not lose focus (fig. 4.8).

Figure 4.7: Query Builder GUI : After selecting a class

Now a user can explore more on the data structure of the class by clicking
on the ’+’ button next to the selected class in fig. 4.7. Clicking that will show
up the classes histogram. Fig. 4.9 shows how the classes histogram looks like.
It will have subclasses to the class. It follows a similar pattern of showing the
number of objects and five object instances. This feature gives the user a fair
amount of idea about the subclasses of the class. There is also a discover
icon (represented by a globe icon) next to all the subclasses, clicking on
which will select that class. We use the Class subclasses API action (section
4.2.1.3) to get the sublasses into the UI. To get the example instances and
count of objects of the class we use the API Class examples (section 4.2.1.4).

4. Approach 57

Figure 4.8: Query Builder GUI : URI viewer

Figure 4.9: Query Builder GUI : Classes histogram

4.3.3 Properties Histogram

The next step for the user is to explore the properties of the selected class
and if he wants then add some filters to those properties. We provide a
properties histogram which separates out the Object type properties and

4. Approach 58

the Data type properties (fig. 4.10). These properties are retrieved from the
Class properties API (section 4.2.1.2).Three things are displayed for each
property. Apart from the name, the range class and also the count of the
objects which have that property are also displayed. Notice that same range
classes have the same color in the property histogram. This helps the user
to quickly identify properties which have similar ranges. Subclasses are also
displayed if there are any for the class. The user can click on those subclasses
to filter the search results.

Figure 4.10: Query Builder GUI : Property histogram

The user can click on any of these properties to add a filter. Adding the
filters is similar to the class search and objects can be searched using free
text search (fig. 4.11). There is also an option to either match these objects
or to NOT match them. This can be done by clicking on the buttons "equals
to" or "not equals to". These objects are retrieved from the Objects search
API (section 4.2.1.5). Similarly, Data type properties can also be filtered.
We do not have a responsive filter for that, but a simple textbox where the
user types the filter values. This improvement is part of our future work.

The next step is to select the properties which the user wants to abstract.
This can be done by clicking on the checkboxes on the right end of each
property (fig. 4.12). Notice in the same figure, the filter i.e., the actors who
have their birthplace in Berlin, Amsterdam and Athens, which we had added
in fig. 4.11. After this the user can check the equivalent SPARQL query.

4. Approach 59

Figure 4.11: Query Builder GUI : Property filter

Figure 4.12: Query Builder GUI : Select properties

4. Approach 60

4.3.4 Equivalent Query

After following the steps which in the previous sub-sections, an equivalent
SPARQL query is formed (fig. 4.13). By default the selected properties are
not displayed in the return variables as this will look fairly cluttered to the
user. But there is a button (fig. 4.13) clicking on which will display the
properties as return elements too. We can see in the fig. 4.14 how cluttered
it looks once its set to "YES". There is a small textbox in which the limit
can be specified.

Generating the equivalent query is tricky. We have implemented this
using Javascript. The main logic involved in it has 4 parts.

1. First the return variables are formed. This is based on the selection
of whether to return selected properties or not. This is the SELECT
part

2. Then the WHERE clause is populated by going through the selected
property filters.

3. The FILTER is populated next. This is usually based on whether Data
type property filters have been added or not.

4. Finally the LIMIT is generated from the LIMIT textbox.

Figure 4.13: Query Builder GUI : Equivalent query

For non-native SPARQL users this is not much of a help but this feature
is helpful for native SPARQL users. Neverthless, the next step will be to
either download the result set or to get a preview of the result set.

4. Approach 61

Figure 4.14: Query Builder GUI : Equivalent query showing all the selected
properties

4.3.5 Result Set Preview

The user has an option to preview the Result Set by clicking the Play icon
(fig. 4.13). This will display the results in the same GUI tool (fig. 4.15). This
is useful as the user gets a picture of what objects he will be abstracting.
These results are populated from our JSON convert API (section 4.2.2.3).
The user can click on the object’s uri and it will open in our URI Viewer.
The time taken for displaying this result set is also displayed. Notice in the
fig. 4.15 how beautifully the language of the labels are displayed as a badge.

4.3.6 Result Set Download

Using this GUI tool, the user can abstract the data in various formats. For
that a couple of download buttons are provided. One is at the bottom of
the equivalent query (fig. 4.13), and the other one at the top right of the
results preview (fig. 4.15). On clicking of any of these download buttons a
Download modal pops up (fig. 4.16) which has various output formats.

By clicking on the "RDB Script" the user can download the RDBMS
upload scripts for the output result set. The RDB Conversion API (section
4.2.2.2) is consumed to provide this output. Similarly, the result set can be
abstracted to a CSV format by clicking on the "CSV" button. This consumes
the CSV conversion API (section 4.2.2.1).

If the user clicks the "JSON" button then three download formats for
JSON shows up (fig. 4.17). All the 3 JSON convert downloads are done by
the JSON Conversion API (section 4.2.2.3). The first one is the standard
W3C recommended version for converting SPARQL query results. We are

4. Approach 62

Figure 4.15: Query Builder GUI : Preview of Result Set

Figure 4.16: Query Builder GUI : The result set download modal

actually using this Conversion API to display the Preview results (section
4.3.5). The second download option is the inefficient format for SPARQL
query results provided by Sesame19 servers (This has been discussed more
in detail in page 46 of section 4.2.2.3). And finally, the last one is the ex-
perimental format to get more information about the properties and classes
along with the abstracted result set.

The final download option is the Generic one which shows up on clicking
the "Generic" button. Using this generic download option the user can create
an ouput template which will reflect how the output should look like. This
gives the user a lot of flexibility on the format in which he wants to abstract
the data to. This is done by consuming the Generic download API (section
4.2.2.4). On clicking that an interactive modal shows up showing the various

19http://rdf4j.org/

http://rdf4j.org/

4. Approach 63

Figure 4.17: Query Builder GUI : The JSON download

steps the user has to follow to provide an output template for the generic
downlaod (fig 4.18).

Figure 4.18: Query Builder GUI : The Generic download

The user is then shown a download button using which he can download
the template. The downloaded template is a simple .txt file which has four
sections (fig. 4.19). In the first section the variables for the properties are
defined. By default this is already filled out by the Query Builder tool so

4. Approach 64

that the user does not have to copy paste the URIs of the properties. After
this there are sections for header, body and footer. The user has to fill out
in these sections. Fig. 4.20 shows a finished template file. Once it has been
filled, the user has to upload it (fig. 4.19). If the format is proper then the
final download option is displayed. This will abstract the data according to
the user’s template.

We decided to go with this approach rather than providing a UI where
the user can fill out the template details because this gives the user more
freedom to add new lines, tabs, etc. Also, since the file is in his local machine,
he can save it and there is less chances of data loss due to internet connection
loss.

Figure 4.19: Query Builder GUI : A Sample Generic download template

Figure 4.20: Query Builder GUI : A Sample Generic download template
after filled by the user

4. Approach 65

4.3.7 SPARQL endpoint

The GUI tool also has a SPARQL end point, in which a query editor is
provided where native SPARQL users can directly type SPARQL queries
(fig. 4.21). Alternatively, the native users can also use the Query Builder’s
equivalent query editor to modify the query further (fig. 4.13).

Figure 4.21: Query Builder GUI : SPARQL endpoint

4.3.8 A Use Case

Now that we have explained the functionalities of the Query Builder tool, we
will now look into a use case. Let us say there is a user, who wants to have a
list of artists who are born in the cities Berlin and Athens. The user is just
interested in getting some description of the Artist in different languages,
its place of birth and date of birth. The user wants to export this data to
his PostgreSQL database. So now the user will follow the following steps

1. First the user will select "DBpedia" from the list of datasets (fig. 4.5).
2. Then in the class search textbox, the user will start typing "Artist".

You can see in the fig. 4.22 that recommendations based on the search
already show up. The user will now click on "Artist".

3. The user now gets some information about Artist. If he clicks the
‘+’ button then the subclasses of Artist show up. This is the class
histogram (fig. 4.23). On checking this histogram, the user realises
that he is just interested in actors and musical artists among artists.

4. Since the user just wants to extract the properties abstract, birth place

4. Approach 66

Figure 4.22: Use Case : Searching for the classes matching Artist

Figure 4.23: Use Case : Browsing the Artist class histogram

and birth date, he checks only the checkboxes in the property histogram
which are adjacent to them (fig. 4.24).

5. As the user has realised that he is just interested in musical artists
and artists, the user checks them from the subclass filter (fig. 4.24).

6. Now the user needs to add a filter that the user is born in Athens and
Berlin. He clicks on the property histogram tile for birth place and a
filter opens up to add the property object filter (check out fig. 4.11 on

4. Approach 67

Figure 4.24: Use Case : Selecting the properties which the user wants for
the class, Artist

how this filter UI looks like).
7. The next step will be to preview the data. The user clicks on the "play"

button to see the results.
8. If he is happy that this is the set of objects he wants to extract, then

all he has to do is click on the "download" button and then opt for
"RDB download" (fig. 4.16).

9. Once the download is finished, the user just needs to run the down-
loaded .sql file in his PostgreSQL database and all the dowloaded data
with the relationships will be present in the database.

Chapter 5

Evaluation

We have evaluated our work in three main categories. First we evaluated
the usability of the Query Builder tool. Then we evaluated the conversion
module and discovered some gaps in it. Our main focus in this one was
to find out the technical gaps in the generic conversion solution(section
4.2.2.4). Finally, we made a comparision of the performance of the different
conversion modules.

5.1 Usability Feedback of Query Builder
It was important to evaluate the usability of the Query builder tool devel-
oped. The evaluation was done by regular feedbacks provided by the Linda1

working group. The framwork developed is part of the Linda project, which
is also consuming the Exploration and Conversion REST API and have
built their own Query Builder which consumes this. The following findings
on usability were made :

1. Initially in the properties histogram, there were three categories, viz.,
ObjectType, DataType and a third one which contained the properties
defined with the rdfs:domain ontology. Since this was found to be
confusing to the users, it was later changed to just two categories, the
ObjectType and DataType properties (fig. 4.10).

2. The property histogram initially was very long and took up most of
the screen. It did not have any scrollable window. Because of this, it
was suggested to have a fixed size for that with a scrollable window.
This change was incorporated accordingly (fig. 4.10).

3. It was pointed out that the user should be given the control on
whichever properties they want to extract instead of getting all the
properties. So a checkbox in the property histogram (check on the
right side of fig. 4.10) was added. Only the checked properties are ex-

1Linda is a European project http://linda-project.eu/

68

http://linda-project.eu/

5. Evaluation 69

tracted. There is also a "check all" option, clicking on which will check
all the properties, which is useful if the user wants to extract all the
properties.

4. In the property histogram, the properties are arranged in the descend-
ing order of the count of the range objects. It would have been useful
if a user is given more options to arrange them, say by alphabetically,
range classes, etc. This has not been implemented and is part of future
work.

5. While filtering for object properties, it was suggested that a NOT
EQUALS option should also be added to match for inequalities. Based
on that two options for EQUALS and NOT EQUALS have been added
(fig. 4.11).

6. The only way to browse for classes is by searching through the textbox
(fig. 4.6). This might be a bit problematic, if the user is not familiar
with the schema underlying the datastore and does not know what
classes are present in the datastore. It has been hence suggested to
have an option for the user to browse for classes without searching.
It should be shown in a paginated manner. This has not been imple-
mented and is part of future work.

7. It was pointed out that the user might get confused when the preview
results are shown, as it shows just the object’s name and its uri (fig.
4.13) and does not show the selected properties. So to avoid this, there
has to be an option to even show the properties in the results preview.
Because of that a button has been added so that the user can choose if
they want to view all the selected properties in the results preview (see
the button on the right side and not the difference in equivalent queries
of fig. 4.13 and fig. 4.14). This option is made as if the properties are
also displayed then the screen becomes cluttered as a class can have
even 50 properties. The user can see the properties of that object by
just clicking on it, which opens the URI of the object in the URI viewer.
This feature was developed to cater for the users who are familiar with
SPARQL and would like to edit the SPARQL query before executing.

8. It was suggested to have a class histogram also, so that the user can
get a sense of the class’s sub-classes. Because of this a class sub-classes
has been added (fig. 4.9).

9. It was suggested that some example instances of the selected class with
the total number of objects it contains, should be displayed. This was
added in later iterations of the product development (fig. 4.9).

10. The addition of filters for DataType properties can be improved. Right
now, it just has a textbox where the user can input the filter. Now it
will be useful if some drag-and-drop UI features can be added to it so
that it becomes simpler for the user to add a filter there. This has not
been implemented and is part of the future work.

5. Evaluation 70

5.2 Evaluation of Conversion module

5.2.1 JSON Conversion

Flaws in the existing JSON format has been identified and a new experi-
mental format which is suitable to our approach has been provided. This
has been elaborated in detail in the section 4.2.2.3. One big problem with
JSON conversion is that, the programming languages which read JSON in-
put, read the whole file or value at once. Its is then treated as a dictionary
or a hashmap. So bigger JSON files become useless for consumption by most
of the languages. Even while conversion, since the whole output is stored in
the memory before it is sent to the client, for larger objects, this becomes
sluggish. And for huge number of objects, the conversion fails sometimes by
running out of memory. Usually for larger sets XML serialization is recom-
mended.

5.2.2 CSV Conversion

The CSV conversion works well for all of the classes tested. To test it, it
was uploaded in a an excel sheet and it was checked if the entries show up
correctly. Now there is no official W3C format to display RDF data with the
approach we are taking, into CSV format. We are having the properties of
the class, which is being downloaded, as the column names of the CSV out-
put file. For SPARQL query result conversions to CSV, the variable names
become the column names of the CSV file. This had been discussed more in
detail in the previous chapter, in section 4.2.2.1.

5.2.3 RDB Conversion

The RDB conversion works well for all of the classes tested. To test this, the
upload scripts generated was run in a PostgreSQL terminal. The tables, its
tuples and its relations are then checked manually. These upload scripts do
not work for any other database. It will be a good idea to also provide upload
scripts for MySQL databases. This won’t be a difficult task, as only the table
creation scripts will be different. The INSERT and UPDATE scripts for both
these databases are the same.

5.2.4 Generic Conversion

For evaluation of the Generic conversion, we tried to reproduce some stan-
dard serializations, using the generic conversion described in the section
4.2.2.4. We then try to find out the gaps of this solution.

5. Evaluation 71

5.2.4.1 CSV serialization using Generic Conversion

Conversion of CSV can be done very easily using this solution. Let us again
go back to DBPedia. Here we will convert the objects of the class Comedian.
For simplicity we will just extract two properties, viz., birth place, and birth
date. First we pass the comma separated column headers as the header

1 rowId, uri, label, birthPlace, birthDate

Then we pass the following body.
1 $[=OBJECT_COUNTER], $[=URI], $[=NAME], "$[=birth_place]", $[=birth_date]

This gives a correct CSV output.
1 rowID, uri, label, birthPlace, birthName
2 1, http://dbpedia.org/resource/Tom_Wrigglesworth, Tom Wrigglesworth,

→˓ "http://dbpedia.org/resource/Sheffield;
→˓ http://dbpedia.org/resource/South_Yorkshire", 1976-05-05+02:00

3 2, http://dbpedia.org/resource/Charles_Firth_(comedian), Charles Firth
→˓ (comedian), "",

4 3, http://dbpedia.org/resource/Charlie_CallasC, harlie Callas,
→˓ "http://dbpedia.org/resource/Brooklyn", 1927-12-20+02:00

5 4, http://dbpedia.org/resource/Chas_Licciardello, Chas Licciardello,
→˓ "", 1977-05-10+02:00

6 ...

The user can also select any other separator apart from ",". TSV2, can be
achieved by replacing "," with "\t". Another userful format are the RRF
files which are upload scripts expected by some relational databases. In that
values are separated by "|".

5.2.4.2 XML serialization using Generic Conversion

We will now attempt a standard RDF/XML output using the generic con-
version. We again will convert the objects of the class Comedian. We will
just extract three properties, viz., birth place, birth date and abstract. We
will use the following header.

1 <?xml version="1.0"?>
2
3 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

→˓ xmlns:dbpedia-owl="http://dbpedia.org/ontology/"
→˓ xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

The following body will be used.
1 <rdf:Description rdf:about="$[=URI]">
2 <rdfs:class>
3 <rdf:Description rdf:about="http://dbpedia.org/ontology/Comedian">
4 </rdfs:class>
5 <rdfs:label>$[=NAME]</rdfs:label>
6 $[for b:birth_place]

2Tab separated values

5. Evaluation 72

7 <dbpedia-owl:birthPlace>
8 <rdf:Description rdf:about="$[=b]" />
9 </dbpedia-owl:birthPlace>

10 $[end]
11 $[if birth_date] <dbpedia-owl:birthDate> $[=birth_date]

→˓ </dbpedia-owl:birthDate> $[end]
12 $[for a:abstract]
13 <dbpedia-owl:abstract

→˓ xml:lang="$[a.lang]">$[=a.text]</dbpedia-owl:abstract>
14 $[end]
15 </rdf:Description>

We will need a closing tag. So we will use the following footer
1 </rdf:RDF>

The following output is obtained.
1 <?xml version="1.0"?>
2
3 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

→˓ xmlns:dbpedia-owl="http://dbpedia.org/ontology/"
→˓ xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

4 <rdf:Description
→˓ rdf:about="http://dbpedia.org/resource/Tom_Wrigglesworth">

5 <rdfs:class>
6 <rdf:Description rdf:about="http://dbpedia.org/ontology/Comedian">
7 </rdfs:class>
8 <rdfs:label>Tom Wrigglesworth</rdfs:label>
9 <dbpedia-owl:birthPlace>

10 <rdf:Description
→˓ rdf:about="http://dbpedia.org/resource/Sheffield" />

11 </dbpedia-owl:birthPlace>
12 <dbpedia-owl:birthPlace>
13 <rdf:Description

→˓ rdf:about="http://dbpedia.org/resource/South_Yorkshire" />
14 </dbpedia-owl:birthPlace>
15 <dbpedia-owl:birthDate>1976-05-05+02:00</dbpedia-owl:birthDate>
16 <dbpedia-owl:abstract xml:lang="en">...</dbpedia-owl:abstract>
17 <dbpedia-owl:abstract xml:lang="de">...</dbpedia-owl:abstract>
18 <dbpedia-owl:abstract xml:lang="es">...</dbpedia-owl:abstract>
19 </rdf:Description>
20
21 </rdf:RDF>

We notice that this output is accurate and our generic conversion features
are suficient to provide it. There is a bit of an issue though. We can see in the
template which we provided that we had to hardcode the property names
of the class Comedian. So the same template cannot be used to download
objects of another class. Therefore, it might be useful if the language had
a variable say PROPERTIES, in which we can iterate through all of the
properties. It might be also better if this supports some other conditions
such as checking for property type. A suggested rewrite can be with such
changes :

5. Evaluation 73

1 <rdf:Description rdf:about="$[=URI]">
2 <rdfs:class>
3 <rdf:Description rdf:about="$[=OBJECT.class_uri]">
4 </rdfs:class>
5 <rdfs:label>$[=NAME]</rdfs:label>
6 $[for property:PROPERTIES]
7 $[for p:property]
8 <dbpedia-owl:$[=property.name] $[if

→˓ property.language_literal]xml:lang="$[=p.lang]"$[end]>
9 $[if property.type = "OBJECT"]

10 <rdf:Description rdf:about="$[=p]" />
11 $[else]
12 $[=p.text]
13 $[end]
14 </dbpedia-owl:$[=property.name]>
15 $[end]
16 $[end]
17 </rdf:Description>

We can see now there is no hardcoding. We are iterating through the PROP-
ERTIES and printing our result according to the property.

5.2.4.3 Turtle serialization using Generic Conversion

Conversion to Turtle format can be done very easily using this solution.
Again we will convert the objects of the class Comedian from DBPedia. For
simplicity we will just extract two properties, viz., birth place, and birth date.
First we pass the prefixes in the header.

1 @prefix rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
2 @prefix rdfs:<http://www.w3.org/2000/01/rdf-schema#>.
3 @prefix dbpedia-owl:<http://dbpedia.org/ontology/>.

Now we pass the following body.
1 <$[=URI]> rdfs:class dbpedia-owl:Comedian.
2 <$[=URI]> rdfs:label "$[=NAME]"@EN.
3 $[for b:birth_place]
4 <$[=URI]> dbpedia-owl:birthPlace <$[=b]>.
5 $[end]
6 $[if birth_date]<$[=URI]> dbpedia-owl:birthDate

→˓ "$[=birth_date]"^^<http://www.w3.org/2001/XMLSchema#date>. $[end]

This will give the following output.
1 @prefix rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
2 @prefix rdfs:<http://www.w3.org/2000/01/rdf-schema#>.
3 @prefix dbpedia-owl:<http://dbpedia.org/ontology/>.
4 <http://dbpedia.org/resource/Tom_Wrigglesworth> rdfs:class

→˓ dbpedia-owl:Comedian.
5 <http://dbpedia.org/resource/Tom_Wrigglesworth> rdfs:label "Tom

→˓ Wrigglesworth"@EN.
6 <http://dbpedia.org/resource/Tom_Wrigglesworth> dbpedia-owl:birthPlace

→˓ <http://dbpedia.org/resource/Sheffield>.

5. Evaluation 74

7 <http://dbpedia.org/resource/Tom_Wrigglesworth> dbpedia-owl:birthPlace
→˓ <http://dbpedia.org/resource/South_Yorkshire>.

8 <http://dbpedia.org/resource/Tom_Wrigglesworth> dbpedia-owl:birthDate
→˓ "1976-05-05+02:00"^^<http://www.w3.org/2001/XMLSchema#date>.

9
10 <http://dbpedia.org/resource/Charles_Firth_(comedian)> rdfs:class

→˓ dbpedia-owl:Comedian.
11 <http://dbpedia.org/resource/Charles_Firth_(comedian)> rdfs:label

→˓ "Charles Firth (comedian)"@EN.
12

This output is a valid Turtle format. But we notice that there are some
redundancies. eg, it is redundant to print the whole URI of the object every
time. It can be prefixed with dbpedia-resource. The following shows how the
output format should ideally look.

1 @prefix rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
2 @prefix rdfs:<http://www.w3.org/2000/01/rdf-schema#>.
3 @prefix dbpedia-owl:<http://dbpedia.org/ontology/>.
4 @prefix dbpedia-resource:<http://dbpedia.org/resource/>.
5 dbpedia-resource:Tom_Wrigglesworth rdfs:class dbpedia-owl:Comedian.
6 dbpedia-resource:Tom_Wrigglesworth rdfs:label "Tom Wrigglesworth"@EN.
7 dbpedia-resource:Tom_Wrigglesworth dbpedia-owl:birthPlace

→˓ <http://dbpedia.org/resource/Sheffield> ;
→˓ <http://dbpedia.org/resource/South_Yorkshire>.

8 dbpedia-resource:Tom_Wrigglesworth dbpedia-owl:birthDate
→˓ "1976-05-05+02:00"^^<http://www.w3.org/2001/XMLSchema#date>.

9
10 dbpedia-resource:Charles_Firth_(comedian) rdfs:class

→˓ dbpedia-owl:Comedian.
11 dbpedia-resource:Charles_Firth_(comedian) rdfs:label "Charles Firth

→˓ (comedian)"@EN.
12

This can easily be achieved by adding a feature to the generic conversion.
There can be a feature just to print the URI’s last value instead of the whole
value. e.g., from the URI http://dbpedia.org/resource/Tom_Wrigglesworth,
just printing Tom_Wrigglesworth.

5.2.4.4 RDBMS serialization using Generic Conversion

The difficult aspects of RDBMS serializations are building table structures,
normalization, generating unique primary keys and linking foreign keys to
them. We can see that, with generic conversion, we can probably hard code
the table structures in the header but the normalization could be tricky and
will require the user to know the property details. This is still possible as
these information are provided through our Exploration REST API (Class
properties API in section 4.2.1.2). But generating primary keys and for-
eign keys becomes too complex for this solution. This solution therefore has
some gaps when it comes to RDBMS serialization, and such kind of output
becomes too overwhelming for this solution.

5. Evaluation 75

5.3 Performance
To evaluate the performance of the software, its speed and efficiency needs
to be compared to its counterpart. This is difficult as extracting RDF data
as objects of classes is a unique approach in itself. Fig. 5.1 shows the time

Figure 5.1: Time taken for conversions of the class Person3

performance when the different conversion modules are called for the conver-
sion of the class Person in DBPedia. We found out that the RDB conversion
takes much more time than the other conversion techniques. This is because
it has an internal lookup feature which generates the foreign keys and its
linking to primary keys which are all stored in the memory as a hashmap.
Also, the RDB conversion .sql files are larger as they have more number of
lines.

The performance here is measured with the number of objects, ranging
from 100-500, to the time taken, in seconds. In practical use, the number of
objects will be much more, but the time taken will be proportionate to what
is found in our results. This is because, nothing is stored in the memory
during the conversion process. The output is written on the fly in an output
stream. This performance can be drastically improved by utilizing the multi-
threading capabilities of Java.

3All the properties of the class, Person have been extracted for the conversion without
any filters.

Chapter 6

Conclusion and Future Work

In the previous chapter we evaluated our thesis work. We found out the gaps
in our solution and also on ways by which the performance can be improved.
In this chapter, we will summarize the thesis briefly and will provide some
recommendations for future work.

6.1 Summary
The work described in the thesis has been concerned with the development
of a solution for better exploration and conversion of RDF Data. Due to
the lack of existing tools to achieve this, a state-of-the-art solution has been
proposed. Taking into consideration a lot of good things from the existing
tools, a RESTful solution to the problem has been implemented so that it
can be enhanced further by other developers with their own exploration and
conversion tools (section 4.2). A working prototype of the framweork for
the conversion and exploration solution has been successfully implemented.
This framework has been successfully extended by a prototype of a Query
Builder GUI tool which we implemented, and this consumes the APIs pro-
vided by the framework (section 4.3). Many features have been developed
in the framework to improve its usability. Various modern Information Re-
trieval techniques have been utilized in the exploration module to improve
its performance. A powerful state-of-the art RDB conversion module was de-
veloped which has improved the flaws in the existing tools (section 4.2.2.2).
An important contribution was building a solution for generic conversion
(section 4.2.2.4). Using that most of the serialization output formats could
be achieved (refer to the evaluation for this in section 5.2.4). Some faults
have been identified in the existing JSON serialization formats and an im-
proved experimental JSON format, which is suitable to our approach has
been provided (4.2.2.3). A Query Builder tool has also been built, which
consumes this conversion and exploration API (section 4.3). It is a GUI tool
which allows the users, both native and non-native SPARQL users, to effi-

76

6. Conclusion and Future Work 77

ciently explore the RDF data. The user is able to convert RDF data to the
format they desire. This GUI tool, using some complex JavaScript methods,
builds an equivalent query from the selections made. The RESTful explo-
ration API is part of a European project, Linda1, and is being used by the
project to build their own Query Builder GUI tool.

6.2 Future Work
Although we have provided a powerful RDF exploration and conversion
solution, it can be further improved in a number of ways :

1. Features to handle multiple classes. One major thing which needs
to be improved is the ability to handle multiple classes. Right now our
APIs handle exploration and conversion of just one class. This can be
improved further by adding changes to handle multiple classes. In the
API, the classes should be sent as a comma separated string containing
the URIs of the classes.

2. Usability improvements. There are some Usability improvements
which needs to be incorporated in the Query Builder tool. These had
been discussed in detail in chapter 5 for Evaluation in section 5.1.
There are a few enhancements, which will improve the user experience.

3. Multi-threaded conversion approach. We figured out from the
Perfomance evaluation of the conversion module, that it needs to be
improved, for faster conversion for larger number of objects. In future
a multi-threaded approach can be used to improve the performance.

4. Indexed lookup for class search. The class search in the explo-
ration framework (section 4.2.1.1) can be speeded up by utilizing in-
dexing solutions of Lucene. The Lucene framework has already been
imported for denerating properties of the class, so this can be easily
re-used.

5. Features to explore through multiple datasets. Right now, our
framework supports exploration and conversion in only one dataset or
datastore. It will be really useful to have features to do this in multiple
datasets. This is challenging, as a SPARQL query can be executed only
at one dataset at a time. So, to implement this, we would need to have
some kind of federated queries where the same query is executed in
the different datasets, and their results are merged according to the
query. This feature has a fair bit of complexity attached to it and will
require a thorough research before implementation.

6. RDB Conversion scripts for databases apart from Post-
greSQL. Right now, the RDB conversion API (section 4.2.2.2) re-
turns upload scripts for PostgreSQL databases. It will be a good fea-

1http://linda-project.eu/

6. Conclusion and Future Work 78

ture, to also have scripts for other popular databases like MySQL. This
is not a difficult task as only the table creation scripts are different.
The INSERT and UPDATE statements are usually same for all the
databases.

References

[ADLHA+09] J.Lehmann S.Hellman S.Auer S.Dietzold and
D.Aumueller. “Triplify - Lightweight Linked Data
Publication from Relational Databases”. In: 18th Inter-
national World Wide Web Conference (2009).

[AG+12] Renzo Angles and Claudio Gutierrez. “Querying RDF
Data from a Graph Database Perspective”. In: (2012).
url: http://users.dcc.uchile.cl/∼cgutierr/papers/eswc05.
pdf (visited on 10/17/2014).

[AKKP+08] Thomas Krennwallner Waseem Akhtar Jacek Kopecky and
Axel Polleres. “XSPARQL: Traveling between the XML
and RDF worlds – and avoiding the XSLT pilgrimage”.
In: (2008).

[BBPC+14] Eric Prud’hommeaux David Becket Tim Berners-Lee and
Gavin Carothers. RDF 1.1 Turtle - Terse RDF Triple lan-
guage. W3C. 2014. url: http://www.w3.org/TR/turtle/
(visited on 01/08/2015).

[BC+11] Tim Berners-Lee and Dan Connolly. Notation3 (N3): A
readable RDF syntax. W3C. 2011. url: http://www.w3.
org/TeamSubmission/n3/ (visited on 01/08/2015).

[BHB+08] Tom Heath Christian Bizer and Tim Berners-Lee. “Linked
Data - The Story So Far”. In: (2008).

[BS+04] C.Bizier and A.Seaborne. “D2RQ - Treating non-RDF
Databases as Virtual RDF graphs”. In: 3rd International
Semantic Web conference (2004).

[C+10] Lin Clark. “SPARQL Views: A Visual SPARQL Query
Builder for Druptal”. In: (2010).

[C+86] Keith Clarke. “The top-down parsing of expressions”. In:
Research Report 383, Dept of Computer Science, Queen
Mary College (1986).

79

http://users.dcc.uchile.cl/~cgutierr/papers/eswc05.pdf
http://users.dcc.uchile.cl/~cgutierr/papers/eswc05.pdf
http://www.w3.org/TR/turtle/
http://www.w3.org/TeamSubmission/n3/
http://www.w3.org/TeamSubmission/n3/

References 80

[CPCDT+12] Diego Ceccarelli Renaud Delbru Stephane Campinas
Thomas E.Perry and Giovanni Tummarello. “Introduc-
ing RDF Graph Summary with Application to Assisted
SPARQL Formulation”. In: (2012).

[dbpedia-swj] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch,
Dimitris Kontokostas, Pablo N. Mendes, Sebastian Hell-
mann, Mohamed Morsey, Patrick van Kleef, Sören Auer,
and Christian Bizer. “DBpedia - A Large-scale, Multilin-
gual Knowledge Base Extracted from Wikipedia”. In: Se-
mantic Web Journal (2014).

[E+04] E.Evans. Domain-driven design : Tackling Complexity in
the heart of Software. Longman, 2004.

[EM+07] O.Erling and I.Mukhailov. “RDF Support in Virtuoso
DBMS”. In: 1st Conference on Social Semantic Web
(2007).

[FHHNS+07] Tonya Hongsermeier Eric Neumann Lee Feigenbaum Ivan
Herman and Susie Stephens. The Semantic Web in Action.
2007.

[G+93] Tom Gruber. “A Translation Approach to Portable Ontol-
ogy Specifications”. In: (1993).

[GS+14] Fabien Gandon and Guus Schreiber. RDF 1.1 XML Syn-
tax. W3C. 2014. url: http://www.w3.org/TR/rdf-syntax-
grammar/ (visited on 12/04/2014).

[HFPSJ+08] C.Parr J.Sachs L.Han T.Finin and A.Joshi. “RDF123:
From spreadsheets to RDF”. In: International Semantic
Web Conference (2008).

[HLSZ+10] S.Lohmann P.Heim and T.Stegemann J.Ziegler. “The
RelFinder User Interface: Interactive Exploration of Re-
lationships between Objects of Interest”. In: Proceedings
of the 14th International Conference on Intelligent User
Interfaces (2010).

[HLTE+10] D.Tsendragchaa P.Heim S.Lohmann and T.Ertl. “Sem-
Lens: Visual Analysis of Semantic Data with Scatter Plots
and Semantic Lenses”. In: Proceedings of the 7th Interna-
tional Conference on Semantic Systems (2010).

[HZL+08] J.Ziegler P.Heim and S.Lohmann. “gFacet: A Browser for
the Web of Data”. In: Proceedings of the International
Workshop on Interacting with Multimedia Content in the
Social Semantic Web (2008).

http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/rdf-syntax-grammar/

References 81

[LS+99] Ralph R. Swick Ora Lassila and W3C. “Resource Descrip-
tion Framework (RDF) Model and Syntax Specification”.
In: (1999). url: http://www.w3.org/TR/1999/REC-rdf-
syntax-19990222/ (visited on 10/18/2014).

[MSDN] Microsoft Developer Network. Microsoft. url: http : / /
msdn.microsoft.com/en-us/.

[PRM+11] David C.De Roure Kevin R.Page and Kirk Martinez.
“REST and Linked Data : a match made for domain driven
development?” In: (2011).

[PS+13] Andy Seaborne Eric Prud’hommeaux. SPARQL Query
Language for RDF. W3C. 2013. url: http : //www.w3 .
org/TR/rdf-sparql-query/ (visited on 12/04/2014).

[RGKST+09] Latifur Khan Steven Seida Sunitha Ramanujam Anubha
Gupta and Bhavani Thuraisingham. “R2D : A brifge be-
tween the Semantic Web and Relational Visualization
Tools”. In: IEEE International Conference on Semantic
Computing (2007).

[SLKLL+14] Gregg Kellogg Markus Lanthaler Manu Sporny Dave Lon-
gley and Niklas Lindström. JSON-LD 1.0. W3C. 2014.
url: http : / / www . w3 . org / TR / json - ld/ (visited on
12/04/2014).

[SRH+13] Bene Rodriguez-Castro Alex Stolz and Martin Hepp.
“RDF Translator: A RESTful Multi-format Data Con-
verter for the Semantic Web”. In: (2013).

[SS+10] Oshani Seneviratne and Rachel Sealfon. “QueryMed: An
Intuitive SPARQL Query Builder for Biomedical RDF
Data”. In: (2010).

[TC+07] W.Teswanich and S.Chittayasothorn. “A Transforma-
tion of RDF Documents and Schemas to Relational
Databases”. In: IEEE PacificRim Conferences on Com-
munications, Compueters and Signal Processing (2007).

[w3c+ontology] W3C Standards : ontology. W3C. url: http : / / www .
w3 . org / standards / semanticweb / ontology (visited on
01/08/2015).

http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
http://msdn.microsoft.com/en-us/
http://msdn.microsoft.com/en-us/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/json-ld/
http://www.w3.org/standards/semanticweb/ontology
http://www.w3.org/standards/semanticweb/ontology

APPENDIX

APPENDIX A : Technical Specifications for Explo-
ration and Conversion API Server
The exploration and Conversion API server has been implemented in Java.

Project source

It is an open source project and it can be downloaded from the github
repository https://github.com/LinDA-tools/RDF2Any.

Requirements

1. Java - Version 1.7.
2. Apache Maven2 - Apache Maven is a software project management

and comprehension tool. Because of this we do not need to include
other libraries which are being used in the project. It will be down-
loaded automatically when the project is built for the first time.

Installation

The following is the Installation guide for the operating systems MacOSX
and Linux.

1. The project dependencies has to downloaded by the following com-
mand

1 mvn clean install

Server Start

To run the API server, execute the following command inside the "linda"
directory of the project

1 mvn exec:java -X

2http://maven.apache.org/

82

https://github.com/LinDA-tools/RDF2Any
http://maven.apache.org/

References 83

API Documentation

A detailed and comprehensive API documentation can be down-
loaded from https://github.com/LinDA-tools/RDF2Any/blob/master/
RESTfulAPIsforRDF2Any.pdf.

APPENDIX B : Technical Specifications for Query
Builder GUI Tool
The Query Builder GUI Tool has been developed in Ruby on Rails

Project source

It is an open source project and it can be downloaded from the github
repository https://github.com/LinDA-tools/QueryBuilder.

Requirements

1. Ruby - Version 2.0.
2. Ruby Version Manager3 - RVM is a command-line tool which allows

you to easily install, manage, and work with multiple ruby environ-
ments from interpreters to sets of gems.

Apart from these, the Exploration and Conversion server must be running
on your local machine.

Installation

The following is the Installation guide for the operating systems MacOSX
and Linux.

1. Ruby version 2.0.0 must be installed using rvm4.
1 rvm install 2.0.0

2. Create a separate enviornment for your Query Builder project for the
dependencies. We will call it "qbuilder". This is called a gemset.

1 rvm use 2.0.0@qbuilder

3. Load your gemset.
1 rvm gemset create qbuilder

4. Install rails framework
1 gem install rails

3https://rvm.io/
4Ruby version manager

https://github.com/LinDA-tools/RDF2Any/blob/master/RESTfulAPIsforRDF2Any.pdf
https://github.com/LinDA-tools/RDF2Any/blob/master/RESTfulAPIsforRDF2Any.pdf
https://github.com/LinDA-tools/QueryBuilder
https://rvm.io/

References 84

5. Install the gem dependencies of the project.
1 bundle install

Server Start

To run the server, execute the following commands directory of the project
1 rvm use 2.0.0@qbuilder
2 rails s

To run the server as a daemon
1 rvm use 2.0.0@qbuilder
2 rails s -d

You can now go to the url http://localhost:3000/ to access the Query
Builder.

	Declaration
	Acknowledgement
	List of Figures
	Abstract
	Introduction
	Problem Context and Motivation
	Thesis Contributions
	Thesis structure

	Background
	The semantic web
	Linked OPEN Data (LOD)
	Resource Description Framework (RDF)
	RDF Serialization
	RDF/XML
	Turtle
	JSON

	RDF Ontology
	SPARQL

	Related Work
	Linked Data and REST Services
	RDF to Any
	Visualization of RDF data
	SPARQL Tools
	XSPARQL

	Approach
	The Initial Approach
	RDF Exploration and Conversion API server
	RDF Exploration helper
	RDF2Any Conversion

	Query Builder GUI Tool
	Selecting datasets
	Exploring classes
	Properties Histogram
	Equivalent Query
	Result Set Preview
	Result Set Download
	SPARQL endpoint
	A Use Case

	Evaluation
	Usability Feedback of Query Builder
	Evaluation of Conversion module
	JSON Conversion
	CSV Conversion
	RDB Conversion
	Generic Conversion

	Performance

	Conclusion and Future Work
	Summary
	Future Work

	References
	Appendix

