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Abstract

Open budget data are among the most frequently published datasets of the open data ecosystem, intended
to improve public administrations and government transparency. Unfortunately, the prospects of analysis
across different open budget data remain limited due to schematic and linguistic differences. Budget and
spending datasets are published together with descriptive classifications. Various public administrations
typically publish the classifications and concepts in their regional languages. These classifications can be
exploited to perform a more in-depth analysis, such as comparing similar items across different, cross-lingual
datasets. However, in order to enable such analysis, a mapping across the multilingual classifications of
datasets is required. In this paper, we present the framework for Interlinking of Heterogeneous Multilingual
Open Fiscal DaTA (IOTA). IOTA makes use of machine translation followed by string similarities to map
concepts across different datasets. To the best of our knowledge, IOTA is the first framework to offer scalable
implementation of string similarity using distributed computing. The results demonstrate the applicability of
the proposed multilingual matching, the scalability of the proposed framework, and an in-depth comparison
of string similarity measures.

Keywords: data interlinking, budget and spending data, string similarity measure, open data, translated
string matching framework, cluster computing

1. Introduction

Public governments and international bodies have increasingly started to publish open government data.
This data plays an important role in improving transparency and compliance (Shadbolt et al., 2012; Tygel
et al., 2016), democratic control and political participation (Huijboom & Van den Broek, 2011; Tygel et al.,
2016), government efficiency and effectiveness (Tygel et al., 2016), and law enforcement (Huijboom & Van den
Broek, 2011). By opening government data, not only the government-citizen barrier can be lowered, but also
comparative analysis among datasets from different regions can be enabled (Tygel et al., 2016; Huijboom
& Van den Broek, 2011). Budget data is one of the most important (The World Wide Web Foundation,
2017) and most published data (Open Knowledge International, 2017). Budget data has remained in the
top three domains published for open data in years 2013-15. 98 countries out of observed 122 countries
provided their budget data openly. OpenSpending1 states that they host more than 3200 fiscal (budget
and spending) datasets openly as of July 2019, which comprises more than 132 million fiscal records. The
growing government budget and spending data makes it possible to perform cross-administration budget
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analysis. Due to the decentralized nature of the data publication and creation, the published budget and
spending data are often disparate, it is published in different structures, formats, languages, metrics (e.g.,
feet/meters), granularity (e.g., years/months), and possess different forms of heterogeneity (Musyaffa et al.,
2018c). In addition, the data are normally found to be incomplete and of low-quality (The World Wide Web
Foundation, 2017). In order to deal with this heterogeneity, open fiscal data is often published along with
non-standardized classifications providing additional information about particular concepts.

Owing to the structural complexity and the size of budget data, the automated cross-linking of these
datasets is a challenging task. In order to do so effectively, it is important to develop mappings of similar
attributes among different datasets available in different languages. Several efficient machine translation
tools(Wu et al., 2016) exist to solve the problem of multilingual data. After the translation, various string
similarity measures(ref) can be used to map similar concepts. However, string comparison is a computa-
tionally expensive task, especially when there is a high volume of concepts to be compared. Therefore, this
task is not feasible for large scale data using a single machine. One of the recent in-memory distributed
computing framework Apache Spark (Zaharia et al., 2016), can provide a scalable solution to solve complex
tasks like mappings over large data.

The above-mentioned challenges and existing technologies have inspired us to design and propose a
framework that uses fiscal-data-classifications, machine-translation and string-similarity in a distributed
and scalable manner for interlinking of open fiscal data. In this paper, we present the framework for
Interlinking of Heterogeneous Multilingual Open Fiscal DaTA (IOTA). To the best of our knowledge, IOTA
is the first approach that: (1) Uses fiscal data classifications in conjunction with machine translations to
provide mappings for heterogeneous and cross-lingual data coming from different regions. Three language
pairs (German-Spanish, German-French, and Spanish-French) have been tested with this approach. (2)
Provides a comparative analysis of 19 different string similarity measures for fiscal data linking. (3) Uses
the distributed scalable computing framework to enable complex string similarity assessment over large
datasets. In short, IOTA is designed to enable multi-regional, context-free, open fiscal data interlinking in
a scalable manner.

The remaining paper is organized as follows: the preliminary concepts are defined in section 2, and the
use case scenario is provided in section 3, Subsequently, section 4 summarizes works related to this paper.
A description of IOTA is outlined in section 5. The evaluation is provided in section 6, with experimental
result, configuration as well as the discussion. Finally, this paper is concluded in section 7.

2. Preliminaries

Open budget and spending data usually contain several components for observation, such as its measures,
dimensions, and attributes (Dudaš et al., 2015). A measure, in spending/budgeting context, contains the
amount of money allocated for a particular activity. A measure may also contain information such as
population or budget/spending as the percentage of GDP. The dimension defines the measure in more
detail, e.g., the classification (elaborated later) to which the observation belongs. An observation also
contains temporal dimension for the observed measure. The attribute provides more precise information on
the observation, for example, metrics (e.g., currency: e or £), precision level, or the measurement unit (e.g.,
km or meter). The combination of dimensions make an observation unique, and the availability of attribute
clarify the observation in more detail.

In this paper, we refer to classification as a set of controlled terms published by respective official bodies to
categorize budget/spending items, consisting of concise textual labels. Classification can be exploited further
to improve data reusability and data comprehension, or perform data interlinking. These classifications can
also be referred to as vocabulary or code list. The common classifications that are published by open data
initiatives include:

• Functional classification describes the expense usage (e.g., Vivienda y Urbanismo or, translated into
English, Housing and Urbanism concept as found in the 2013 Aragon Government Budget2).

2https://opendata.aragon.es/catalogo/presupuesto-gobierno-aragon-2013
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• Administrative classification states which administrative office is responsible for a particular budget line
(e.g., Secretaría General Técnica de Obras Públicas, Urbanismo, Vivienda y Transportes,
or in English, General Technical Secretariat of Public Works, Urban Planning, Housing,
and Transportation found in the same Aragon datasets).

• Other classifications, include: economic classification (e.g., capital transfers, real investments),
procurement items (e.g., Agricultural products, as well as Electricity and heating), and so on.

Some classifications are standardized by international bodies. For example, Classification of the Functions
of Government/COFOG (United Nations Statistics Division (UNSD), 1999), a functional classification de-
veloped by the United Nations and Common Procurement Vocabulary/CPV (European Commission, 2008),
a procurement item classification by the European Union). A detailed outlook on the differences in budget
and spending data classification is presented in our earlier work on fiscal heterogeneity (Musyaffa et al.,
2018c). These classifications are published by different public administration authorities, therefore the con-
cepts may not be standardized hence leading to data integration problems. In order to deal with complex
computational tasks on integrating large scale data, cluster computing is mostly utilized.

Cluster computing can be defined as a collection of computers that jointly perform a given task in dis-
tributed manner. Cluster computing software framework, such as Apache Spark RDD allows computations
to be performed in-memory within large clusters in a fault-tolerant manner (Zaharia et al., 2012). In case
the computed RDD does not fit in the host memory, Spark automatically performs spill to disk operation
which moves the RDD from host RAM to host disk. Apache Spark offers internal optimizations, such as
an optimized operation for Cartesian join. Since Apache Spark requires cluster manager as well as dis-
tributed file system, Apache Spark provide Spark Standalone as a cluster manager and Hadoop Distributed
File System (HDFS) as a distributed file system, among others. HDFS is a file system that is known for its
scalabilitity, portability, fault-tolerant, and distributed manner with a master/slave architecture.

IOTA uses a set of string similarity measures to search the effective string similarity measures to find
mappings between translated concepts. The py_stringmatching library3 is used for string similarity measure
calculation in IOTA. The list of compared similarity measures is provided in Table 5. Five main similarity
measure categories are presented and used for comparison in this paper (py_stringmatching Documentation,
2016):

• Sequence-based (see Table 2) for similarity measures in which the inputs are considered as a sequence
of characters.

• Set-based (see Table 3) for similarity measure in which the inputs are considered as tokens (i.e. words).

• Hybrid-based (see Table 3) for similarity measures which combines set-based and sequence-based sim-
ilarity measures.

• Bag-based (see Table 4) for similarity measures that collect tokens as bags in which a token in these
similarity measures could appear multiple times.

• Phonetic-based (see Table 4) for similarity measures that mimic string pronunciation.

3. Motivating example and use case

Open fiscal concepts published by different public administrations are often multilingual and there is no
indication if two words have a similar meaning. For example, in Table 1, where datasets from the Aragon
government (in Spanish) and from the municipality of Thessaloniki (in Greek) does not indicate that the
concepts within the table have similar or related meaning regarding the functional classification item culture.
If a mapping exist between two concepts from different datasets, further analysis can be made possible.

3https://pypi.org/project/py-stringmatching/
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Data A Data B

Language/Adm. ES/Aragon EL/Thesssaloniki

Code 45 6471

Label Cultura Έξοδα πολιτιστικών δραστηριοτήτων

Similar? Translation Culture Cost of cultural activities

Functional 

Classification

Table 1: A motivating example: functional classifications originating from Aragon (in Spanish) and from Thessaloniki (in
Greek) which actually represent a similar concept of culture for the public budget. Each concept typically has their own code
and label in the publisher’s respective language, without indication that both concepts are, in fact, similar. Both classifications
are published in separate spreadsheet documents.

Integrating classifications from different datasets allows at least two use cases. First, it allows comparison
of the allocated/spent budget for a particular classification item (for example, culture, public transport, and
so on), even when the datasets’ classifications are published in different languages. Second, the integrated
classifications could be mapped to public semantic knowledge bases (e.g., Wikidata, DBpedia), to enrich the
concepts with additional information (such as an instantiation within within certain ontologies and leverage
word sense hierarchies). Both use cases allow a deeper understanding of the budget and spending datasets.
More precisely, they allow data discovery and reusability which would provide actionable insight for public
administrators, civil communities, NGOs, stakeholders and most importantly the citizens who fund the city
with their taxes.

4. Related work

Our work involves several topics, ranging from Open Fiscal Data and Open Data domain, as well as
multilingual datasets mapping and open budget and spending data platforms. This section briefly covers
the state of the art for these topics separately.

4.1. Open fiscal data analytics and platforms
The state of the art in open fiscal data analytics and harmonization is limited. Our previous work

discusses the issues and recommendations for open fiscal data quality (Musyaffa et al., 2018a). The analysis
of heterogeneity within open fiscal datasets is discussed in Musyaffa et al. (2018c). These heterogeneities
can be minimized if the datasets are constructed following data models that comply with the particular
specification, since one of the key requirement of ’government data quality, authority and governance’ is
metadata specification, and data documentation standards (Bertot & Choi, 2013). For fiscal data to be
more reusable, available open budget and spending data specification need to be used, such as the Open
Fiscal Data Package4 for tabular datasets, or the OpenBudgets.eu data model5 for RDF data. Providing
reusable open data can significantly reduce the costs of reuse, adaptation, and innovation for third parties.
These third parties are proven to be willing to develop tools and services for consuming and analyzing
government data (Ding et al., 2010).

4http://frictionlessdata.io/specs/fiscal-data-package/
5https://openbudgets.eu/resources/2016/11/17/open-budgets-data-model-and-landscape/

4

http://frictionlessdata.io/specs/fiscal-data-package/
https://openbudgets.eu/resources/2016/11/17/open-budgets-data-model-and-landscape/


Sequence-based Similarity Measure
Name Description Formula

Bag
Distance

Counts characters in each string x and y as a multiset, subtracts the difference between elements in
x and y as well as between the difference of elements between y and x, and chooses the maximum
element count from these numbers (Bartolini et al., 2002).

dBD(x, y) = max(|x− y|, |y − x|).

And can be normalized by:

sE(x, y) = 1− dBD(x, y)

max(|x|, |y|))

Leven-
shtein

Measures the distance of two given strings based on how much minimum edit cost (in-
sert/delete/substitute) are needed to make two strings identical (Levenshtein, 1966). Also known
as Edit Distance.

Given d(x,y) is the edit distance between
strings x , y, normalized Levenshtein similarity:

sL(x, y) = 1− d(x, y)

max(length(x), length(y))

Jaro Counts how many common characters c are similar between strings x,y, and how many transpositions
t are needed to make these common characters have a similar sequence (Jaro, 1980; Doan et al., 2012).

sJaro(x, y) =
1

3× [ c
|x| +

c
|y| +

c− t
2

c ]

Jaro-
Winkler

Improves Jaro by considering two extra parameters: the maximum length l of common prefix between
two strings and the weight w considered for the prefix (Winkler, 1993; Doan et al., 2012). sJW (x, y) = (1− l × w)× jaro(x, y) + l × w

Ratio
Utilizes parameters M as a total number of matches between elements in the strings x and y, and T
as the total number of elements in both strings (Cohen, 2011). Score is normalized by dividing the
result by 100.

sR(x, y) = 2× M

T
× 100

Partial
Ratio

Compares the shorter string of length n with every sub-string of length n from the longer string. The
maximum similarity score from these comparisons are provided as the partial ratio similarity score.
Suppose between compared string x and y, x is the shorter string with length n. y is splitted into
n-gram with length of n, resulting a set of tokens y with m member. By = B1, ...,Bm (Cohen, 2011).
Score is normalized by dividing the result by 100.

sPR(x, y) = max(

m∑
i=1

ratio(x,Bi))

Partial
Token
Sort

Converts two strings into tokens, sorting the tokens, and calculates the partial ratio similarity score
of calculated strings (Cohen, 2011). The score is normalized by dividing the result by 100.

Token
Sort

Splits two strings into tokens, sorts the tokens and calculates the ratio similarity score (Cohen, 2011).
The score is normalized by dividing the result by 100.

Table 2: An overview of eight sequence-based string similarity measures used in the experiment and their respective formula. Some similarity measures (Token Sort and Partial Token Sort) use
formula from other similarity measures. Some of the similarity scores are not normalized by default, those are Bag Distance, Levenshtein, Ratio, Partial Ratio, Partial Token Sort, and Token Sort
similarity.
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Set-based Similarity Measure
Name Description Formula

Cosine-
Ochiai

Computes the intersection between two sets of tokens, divided by the square root of the multiplication
between the size of both token sets. This is A derivative of cosine’s algorithm known as Ochiai
coefficient (Jiang et al., 2014; py_stringmatching Documentation, 2016).

sC(x, y) =
|Bx ∩By|√
|Bx|.|By|

Dice
Also known as Sørensen-Dice coefficient. It is calculated by twice the size of the intersection be-
tween two sets of tokens, divided by the size of both token sets (Sørensen, 1948; py_stringmatching
Documentation, 2016).

sD(x, y) = 2× |Bx ∩By|
|Bx|+ |By|

Jaccard The division between the intersection size of two sets and the union size across the sets (Jaccard, 1901;
Doan et al., 2012).

sJacc(x, y) =
|Bx ∩By|
|Bx ∪By|

Overlap
Coeffi-
cient

Indicates the overlap between two sets by dividing the intersection size between two token sets with
the minimum size from of the two sets (Vijaymeena & Kavitha, 2016).

simOC(x, y) =
|Bx ∩By|

min(|Bx|, |By|)

Tversky
Index

The division between intersection size of the token sets with: the sum of intersection between sets,
the number of items only available on the first token set multiplied by a coefficient α, and the number
of element only available in the second token sets multiplied by a coefficient β (Tversky, 1977).

sT (x, y) =
|Bx ∩By|

|Bx ∩By|+ α|Bx −By|+ β|By −Bx|

Hybrid-based Similarity Measure

General-
ized

Jaccard

Calculated by 1) converting compared strings x, y into two sets Bx , By; 2) calculating the string
similarity s between tokens across the two sets (hence Cartesian product is involved ); 3) filtering the
string similarity value s so that s is larger than specified threshold α. The result of this filtering is a
bipartite graph mapping between Bx and By with similarity score s > α and collected into a graph
M, which is then used to calculate the Generalized Jaccard similarity score; 4) getting the maximum
similarity pairs s from graph M, and use the pair with maximum similarity s to calculate the final
score.(On et al., 2007; Doan et al., 2012).

sGJ (x, y) =

∑
(xi,yj)∈M

s(xi, yj)

|Bx|+ |By|+ |M |

Monge-
Elkan

Also requires specifying a string similarity as a parameter name. Calculated with the following steps:
1) compared strings x, y is tokenized to x = A1, ...An and y = B1, ...Bm; 2) string similarity scores
are counted against each token from the other set; 3) the maximum similarity score from each set is
then taken from the two sets and then averaged. String similarity function s′() is the chosen string
matching similarity measure parameter (Monge et al., 1996; Doan et al., 2012).

sME(x, y) =
1

n

n∑
i=1

m
max
j=1

s′(Ai, Bj)

Soft
TF/IDF

The calculation is done by: 1) computing a similarity score between tokens;, 2) filtering the tokens
using threshold;, and 3) calculating similarity score using TF/IDF vectors along with filtered similarity
score (Bilenko et al., 2003). In this experiment, Jaro is used as the secondary string similarity measure.

Table 3: An overview of five set-based and hybrid-based string similarity measures and their respective formula used in our experiment: Ochiai as a derivative of Cosine similarity (will be referred
later here as Cosine), Dice (also known as Sørensen-Dice Coefficient), Jaccard, Overlap Coefficient and Tversky Index. In the set-based similarity metrics part, Bx and By are tokens generated
respectively from compared strings x and y. All the resulting values from these similarity measures fall in the range of [0,1].
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Bag-based Similarity Measure
Name Description

TF/IDF
Takes into account term frequency to measure the similarity between two documents, and
offset the similarity by the inverse document frequency so that commonly-appearing-terms’
importance are discounted (Manning et al., 2008).

Phonetic-based Similarity Measure

Soundex

To mimic pronunciation, Soundex replaces or removes characters from each compared
strings, ended by examining processed strings. The steps are: 1) keep the first letter of
each compared strings. 2) remove any occurrence of W, H, Y and vowels (A, E, I, O, U).
3) replace B, F, P, V with 1; C, G, J, K, Q, S, X, Z with 2; D, T with 3; L with 4; M, N
with 5; R with 6. 4) remove any consequential identical digits (e.g., ’22’ to ’2’). 5) keep
only the first four characters but if the total length is less than four characters, the digit ’0’
is appended until it has four characters. 6) compare the processed strings which result in
binary similarity score (Odell & Russell, 1918; Doan et al., 2012; Zobel & Dart, 1996).

Editex

Editex is a Soundex similarity modification with different letter groups to represent a more
accurate pronunciation and allows some characters to be on more than one of nine letter
groups: group 0 = {A, E, I, O, U, Y}, 1 = {B, P}, 2 = {C, K, Q}, 3 = {D, T}, 4 = {L,
R}, 5 = {M, N}, 6 = {G, J}, 7 = {F, P, V}, 8 = {S, X, Z}, 9 = {C, S, Z}; in which {W,
H} is removed. Editex utilizes a Levenshtein-like similarity measure to compare processed
strings (Zobel & Dart, 1996).

Table 4: An overview of bag-based and phonetic-based string similarity metrics used in the experiment and applicable formula.
Due to the complexity of some similarity measures, it is not possible to squeeze summarized formula in this table. The similarity
score of these algorithms are normalized by default. Soundex yields binary decision by default, while Editex needs the similarity
score to be normalized.

An important part of big data in an e-Government is the implementation of a robust architecture and
data platform (Bertot & Choi, 2013). Following our previous work, a specific platform was devised for
open spending and budget datasets. This platform, OpenBudgets.eu (Musyaffa et al., 2018b), provides
a materialized and budget/spending-specific architecture for consuming Open Budget and Spending data.
The OpenBudgets.eu platform is more concrete when it is compared to an earlier, related work, DIGO, that
proposes a conceptual open data architecture (Machado & de Oliveira, 2011). Another work, Data-gov Wiki
(Ding et al., 2010), converts raw data from US data.gov open data portal into RDF. In contrast to Data-gov
Wiki, OpenBudgets.eu platform specifically integrates tools to upload, annotate, transform, visualize and
analyze datasets from budget and spending domain. However, a missing component of the OpenBudgets.eu
platform is a mapping tool that could map concept labels from classifications by different publishers and in
different languages.

Budget comparison across different public administrators could potentially be made if there is a mapping
across labels from different languages. This mapping is a part of data interlinking cycle, and according
to Attard et al. (2015), data interlinking is one of the eight elements within Open Data Life Cycle, and
is particularly crucial for data exploitation stage. There are often similar concepts provided in different
languages, but there is a rare chance that a mapping across these labels from different languages exists (see
a related survey from Musyaffa et al. (2018a)). Our work in this paper addresses the mapping challenge
by experimenting with a framework consisting of machine translation, multiple similarity measures, and a
cluster computing architecture to find which similarity measures are more suited to create mappings for
concepts originating from different languages.

4.2. Multilingual concept mapping
4.2.1. Distributional semantics

Firth (1957) states that the words surrounding a word in question characterize its meaning. This is a
basis for distributional semantics which uses the distributional properties in a large data sample for finding
semantic similarities across language items. In the past few decades, there have been several distributional
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semantic modelling approaches, such as Latent Semantic Analysis (LSA) (Deerwester et al., 1990) and
Hyperspace Analogue to Language (HAL) (Lund, 1995). Another approach, word embedding, has been
gaining popularity in the past few years. Word embedding maps words and phrases within a vocabulary to
vectors of real numbers using a variety of methods. One of these methods uses a shallow neural network
to learn this mapping coined as Word2Vec (Mikolov et al., 2013). Using Word2Vec, the semantic similarity
between words of similar language can be computed utilizing vector values that are being compared. Joulin
et al. (2016) have implemented the fast word embedding learning algorithm coined as FastTex and published
the pre-trained models in multiple languages.6 Aligning different languages into one vector space is done by
MUSE (Conneau et al., 2017). The MUSE team has also published aligned word embedding vectors trained
from different languages of Wikipedia.7 These multilingual word embeddings that have been aligned into a
single vector space can be further used to calculate the similarity between words from different languages.
Yet, multilingual phrases similarity (instead of words) is not directly facilitated in the MUSE pre-trained
model.

We have tested the aligned multilingual pre-trained vectors from MUSE for evaluating the quality of
mappings between multilingual phrases. This is done by calculating the cosine similarity between averaged
vectors of each concept from each language. If a phrase has multiple links, we select the phrases pair with
the maximum similarity value. However, the result of using this averaged-vector approach from multilin-
gual phrases is not satisfactory. For example, any language pair involving German language resulted in
a maximum F-Measure value of 0.153 for CPV datasets. Following observations hold when working with
pre-trained embeddings for specialized cases.

1. The pre-trained models are more generic, and are not fully applicable to specialized fiscal data.

2. The training of models require substantial amounts of training data, which is not widely available for
fiscal data.

3. The effectiveness of word embeddings usage depends on the language. For example, in our experience,
a word in German consists of several conjugated words that are not available in the publicly-available
Wikipedia-based pre-trained word embedding vector index. Hence, it results in a word vector that can
not be found in the vector index.

4. The published pre-trained word embedding vectors are, as the name suggests, based on words instead
of phrases. Its application to the cross-lingual phrase similarity requires n-gram training from each
respective language corpora. However, such data is not available in the fiscal domain.

4.2.2. Entity linking
Concept mappings can be done when concepts are represented as entities within knowledge bases. Pappu

et al. (2017) performed a lightweight multilingual entity extraction and linking using an approach they coined
as Fast Entity Linker (FEL). The FEL approach detects mentions and retrieves entities, utilizing compact
entity embedding that captures and searches several features used for entity disambiguation (e.g., click
logs). Graph algorithms and context-based retrieval on structured knowledge bases can also be utilized
in detecting correct entities for multilingual settings. Moussallem et al. (2017) presents a multilingual,
knowledge-base agnostic and deterministic entity linking approach (coined as Multilingual AGDISTIS or
MAG) which combines context-based retrieval and graph algorithms on structured knowledge bases. MAG
does not require mono-lingual models. In another work, labels surrounding a graph entity can also be used
to find a matching entity from another language with the help of machine translation. Such work is done by
Lesnikova (2016), in which context found in an RDF graph is used to find links between similar entities from
different languages. This is done by creating virtual documents from the labels found in the neighboring
nodes of compared RDF entities. Virtual documents are then translated to a similar language and then
compared with string similarity measures. All the approaches summarized above require the data and the

6https://fasttext.cc/docs/en/crawl-vectors.html
7https://github.com/facebookresearch/MUSE/
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context and/or published with additional information in RDF format. These approaches are however not
applicable to budget and spending datasets. Budget and spending classification data tends to be published
as a spreadsheet in tabular form. Classification concepts in fiscal data tend to be provided in short phrases,
i.e., not provided as entities on a knowledge graph with surrounding labels and properties. Hence, attempts
to interlink fiscal data concepts as done by other previous works by Pappu et al. (2017); Moussallem et al.
(2017); Lesnikova (2016) are not feasible due to the lack of entity/semantics surrounding published fiscal
concepts. We consequently choose to investigate the use of string similarity measures instead to create a
mapping between translated open fiscal data concepts.

4.2.3. Ontology based data integration
According to Wache et al. (2001), Ontology-Based Data Integration (OBDI) refers to the use of ontologies

to capture implicit knowledge from different data sources and obtain the semantic interoperability from these
heterogeneous sources. Wache et al. (2001) also states that ontology can be used to integrate data with
several approaches: (1) Single ontology - requires an ontology to integrate data. (2) Multiple ontologies -
requires mapping of concepts across used ontologies. (3) Hybrid - uses one ontology as a base for underlying
multiple ontologies used in data integration. In fiscal data context, it may be possible to integrate all
these datasets multilingually using OBDI if the following is available: (a) Ontologies that able to represent
different types of fiscal classifications. (b) An approach to mapping the different types of fiscal classifications
into concept instantiation/assertions (i.e., ABox) based the specific ontologies. (c) A method to handle
multilingualism during assertion mappings.

Ontology-based data integration for heterogeneous datasets requires a well-defined ontology for our use
case, i.e., open fiscal data. Specifically for the main open fiscal data itself,8 OpenBudgets.eu (OBEU) ontol-
ogy has been developed by Dudaš et al. (2015). The OBEU ontology is based on data cube vocabulary9 for
statistical data. The ontology covers how money allocated/spent for budget/spending are represented (i.e.,
measure), how attributes (e.g., the currency) can be represented, and how dimensions (i.e., classifications)
can be modelled. However, a specific ontology10 for representing concepts from different open fiscal data
classifications are not yet available.

Instead of publishing open fiscal data in the RDF format that adopts ontologies, open fiscal data is
published in a tabular format without semantics. The dataset is accompanied by controlled vocabularies in
the form of classifications. These classifications are mostly independently published by local/national public
administrators. Despite the availability of standardized classifications published by interstate organizations,
these classifications are not adapted by local/national public administrators (Musyaffa et al., 2018a), since
adapting these vocabularies requires alignment of concepts from their business process flow. This alignment
requires efforts, resources, and an approach to handle fiscal data complexity. As we know, fiscal classification
deal with concrete controlled concepts, while ontologies deal more in an abstract and formal level, hence it
requires more expertise to apply or even develop ontologies for this domain. This demonstrates that the
creation of ontologies is not feasible for now. Moreover, since embedding semantics on publishing fiscal data
requires a steep learning curve, these ontologies may not be used by the data publishers. This is because the
development and application of these ontologies require training, substantial efforts, and resources which
are often neither feasible activities nor a priority for these public administrations.

4.3. Data interlinking frameworks
SILK Framework (Volz et al., 2009) is a data interlinking framework which, among others, consists of

different string similarity measure implementations. Some common uses of SILK Framework include (1) link
generation among data items across different sources of linked data, and (2) data transformation of structured
data. SILK Framework provides a visual user interface to build a data interlinking pipeline. The framework
also allows the query of data items from SPARQL endpoints, as well as obtain data items from structured

8i.e., the datasets with stated budgeted amount
9https://www.w3.org/TR/vocab-data-cube/

10in the sense that available classes, axioms, and properties that correlates the terms within the ontology are formally defined.
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data formats, such as CSV. String similarity measures are also implemented within SILK Framework as
plugins, which ranges from sequence-based and set-based string similarity measures. A distance threshold
can be specified in the string similarity experiment on SILK Framework. Using SILK, an experiment
has been done by Karampatakis et al. (2018), utilizing string similarity measures implementation to map
links between Central Product Classification (CPC, published by the United Nations) and Classifications
of Products by Activity (CPA, published by the European Union and derived from CPC). Four similarity
measures are used in their experiment namely: Dice, Jaro, Jaro-Winkler, and Soft Jaccard, Jaro provides
the best precision value when the threshold (i.e., distance) is set at 0.0, and Dice provides the best recall
with a threshold set at 0.5. Depending on the similarity measures and distance threshold configuration,
the usage of SILK Framework may impose an out-of-memory problem as we experienced with our initial
experiment (will be elaborated in subsubsection 6.2.2). The fiscal classification concepts may result in a
large number of comparisons that require scalability, which is not covered by SILK Framework.

4.4. Open Data Related Platforms and Tools
The proposed work on mapping and interlinking open datasets can improve the existing open data

platforms such as OpenSpending, Socrata,11 Junar,12 OpenGov,13 and WikiBudgets.14 OpenSpending
provides a free platform to store, visualize and analyze open fiscal datasets. Fiscal data in OpenSpending
is stored as a CSV file, accompanied with JSON metadata which is created via annotation done by the
uploader. The combination of this CSV file and the accompanying JSON metadata follows a specification
for publishing open fiscal data as Fiscal Data Package15 (FDP). Socrata is a Data as a Service platform
that allows data integration and analytics. It also supports a wide variety of services, such as governmental
program and public engagement optimization, trends and governmental insight discovery, as well as open
data-related services, including open budget. Wikibudgets is a platform to interactively visualize budget
data from public administrations in an easy to understand manner. Junar is an open data platform to
make open data easier to use for citizens, developers, and companies. Junar provides features such as
visualizations, dashboards, maps, and dynamic tables. Upon the inspection of the websites of mentioned
platforms, we could not find any platform listed that provides a multilingual mapping across open data. For
this reason, we deem that it is important to investigate further regarding concept mapping approaches for
open fiscal data domain.

5. Approach

The architecture overview of IOTA is shown in Figure 1. Given any two fiscal datasets, their labels
or concepts are identified according to the provided classifications. These classifications act as blocks for
comparisons and the labels belonging to different classifications are not compared, avoiding any unnecessary
comparisons and optimizing the performance. Since the labels are provided in the regional languages, an
essential step is to translate the concepts based on the classification pairs. We used Google Translate16 for
the translation of concepts. These translated concepts are then post-processed for case correction and stored
in HDFS. The string matching module is executed within Apache Spark (Figure 3), and this module reads
the data for parallel string matching from the HDFS. The parallel string similarity assessment in IOTA
is achieved by using py_stringmatching library (py_stringmatching Documentation, 2016; Doan et al.,
2012), and the parameters used in IOTA are detailed in Table 5. IOTA utilizes 19 generic string similarity
assessment algorithms taken from five different similarity measure categories. The inspected similarity
measures in this experiment are shortly described in Table 2, Table 3, Table 4, for sequence-based, set and
hybrid-based, as well as bag-based and phonetic-based, respectively.

11https://socrata.com
12http://www.junar.com/
13https://opengov.com/
14https://www.wikibudgets.org/
15https://frictionlessdata.io/specs/fiscal-data-package/
16https://translate.google.com/
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Another perspective of Figure 1 can be seen in Figure 2, explaining parameters used within IOTA
Framework. Open fiscal data comes with respective classifications, which ideally should be aligned before
integrating the data. However, this is not the case. For linking the similar concepts, we use and benchmark
several similarity measures after string preprocessing and machine translation steps. A minimum threshold
of γ is set to filter the overall similarity values that are allowed to be inspected as links. To investigate
the optimum similarity threshold values, we set an iterative threshold t(i) where γ ≤ t(i) ≤ 1. The filtered
result is then analyzed and evaluated, which are then interlinked via the RDF SKOS ontology for interlinking
similar multilingual concepts.

The translated and processed set of concepts stored in HDFS for the two data sets are represented
internally as RDDs as shown in Figure 3. The RDD is a parallel collection of records that can be processed
in a distributed, parallel manner to achieve scalability. The entities presented in the two RDDs are then
cross-compared with each other for the similarity assessment. For concept matching, we use a regular
expression before applying the selected similarity assessment to extract the exact location of the labels of
interest from each label. The output of this parallel operation is an RDD with the entity pairs and their
similarity score. The final step is to filter out the scores in the distributed RDD, based on the provided
threshold. The filtered result is stored back to HDFS, which is used for evaluating the performance. The
use of classification based translation, matching and parallel in-memory processing differentiates IOTA from
other state of the art string comparison frameworks.

Data Parallelism*

Classification
(DE-ES-FR)

Classification
(ES-FR-DE)

Translated 
Classification 

(EN)

Translated 
Classification 

(EN)

Translation

Translation Lower-Case 
Transformation

Lower-Case 
Transformation

Transformed 
Classification

Transformed 
Classification

Token-Based
Similarity

Phonetic-Based
Similarity

String-Based
Similarity

Hybrid
Similarity

Similar 
Concepts Links

Analytics*

Evaluation

Bag-Based
Similarity

Figure 1: Our IOTA pipeline to map similar concept from translated classification. Preprocessed, translated classifications
from different language and public administration are measured for their similarity scores. *The similarity measure comparison
and analytics process utilizes Apache Spark for scalability.

6. Experiment and evaluation

6.1. Dataset and evaluation metrics
For the experiment, we use the European Union official procurement classification,CPV classification

(European Commission, 2008). CPV is published in 24 different European languages. This dataset is
comprised of 9454 concepts. Each concept in any language is associated with a unique key. Hence, the key
can be used to identify a proper match between concepts.

The experiment starts with translating concepts from different languages using Google Translate. Three
datasets originally from German, Spanish and French are translated into English. The translation result is
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IOTA	Framework

String Preprocessing

Machine Translation

Similarity Measure 

Iterative Threshold t(i), γ≤t(i)≤ 1

Threshold γ

RDF skos:related links

Similarity Measures 
and Comparison

Classification n
Classification ...
Classification 2

Classification 1

Open Fiscal
Data 1

Open Fiscal
Data ...

Open Fiscal
Data n

Links Evaluation 
and Analysis

Figure 2: IOTA Framework takes out classification labels from different languages, as well as specific similarity measures
and minimum threshold that can limit the similar string estimation. Later, we iterate from the minimum passing similarity
threshold from γ to 1, to check which thresholds yield the highest F-Measure.

Type
Similarity 

measure

Norm. 

range

Score 

ranging 

from [0-1] 

by default?

Non-

norm. 

Score 

Range

Extra 

param. 

required?

Type of extra parameter
Default value 

(respectively)

Bag-based TF/IDF [0,1] Yes - Yes Corpus (list containing lists), Dampening (true/false) None (only use 

tokens from 

compared strings), 

True
Generalized Jaccard [0,1] Yes - Yes Similarity measure, Similarity threshold Jaro, 0.5

Monge-Elkan [0,1] Yes - Yes Similarity measure Jaro-Winkler

Soft TF/IDF [0,1] Yes - Yes Corpus (list containing lists), Similarity measure, Similarity threshold None (only use 

tokens from 

compared strings), 

Jaro, 0.5
Soundex [0/1] Yes - No - -

Editex [0,1] No Integer Yes Match cost (weight when the correct char match), Group cost (weight when 

the char is in the same Editex group), Mismatch cost (weight when the 

char match incorrect), Local variant

0, 1, 2, False

Bag distance [0,1] No Integer No - -

Jaro* [0,1] Yes - No - -

Jaro-winkler* [0,1] Yes - Yes Prefix weight (weight for the prefix) 0.1

Levenshtein* [0,1] No Integer No - -

Partial Ratio [0,1] No [0, 100] No - -

Ratio [0,1] No [0, 100] No - -

Partial token sort [0,1] No [0, 100] Yes Force ASCII (boolean to remove non-ASCII characters), Full process 

(boolean for preprocessing such as lower case transformation as well as 

removing leading/trailing white spaces) 

True, True

Token Sort [0,1] No [0, 100] Yes Force ASCII (boolean to remove non-ASCII characters), Full process 

(boolean for preprocessing such as lower case transformation as well as 

removing leading/trailing white spaces) 

True, True

Cosine [0,1] Yes - No - -

Dice [0,1] Yes - No - -

Jaccard [0,1] Yes - No - -

Overlap Coefficient [0,1] Yes - No - -

Tversky Index [0,1] Yes - No - -

Hybrid-based

Phonetic-based

Sequence-based

Set-based

Table 5: The list of different similarity measures used within the IOTA framework. Similarity measures marked with asterisks
(*) indicate a cythonized implementation in the py_stringmatching library that speeds up the performance. The similarity
score range from 0 to 1 for most similarity scores, except for Soundex similarity, which provides a true or false decision. Most
of our experiments use default parameter values provided by the library, except for TF-IDF and Soft TF-IDF, in which we are
using a corpus from the whole translated words instead of only compared, translated words.
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Figure 3: Distributed processing pipeline that we perform in our IOTA experiment. Preprocessed classification documents are
stored within Hadoop FS, then Apache-Spark operations follow the next step: creating RDD data types out of stored documents,
performing cross computation, getting similarity score between concepts, filtering the scores and finished by evaluating the
result.

then paired in three language pairs as shown in Table 6: German-Spanish, German-French, and Spanish-
French.

German Spanish

Spanish French

French German

Language Pairs

Table 6: Language pairs used for our experiment. The pairs are chosen based on the availability in the datasets (Common
Procurement Vocabulary by European Union) and how wide the EU languages are used.

The mappings between the two classifications are evaluated using recall, precision, and F-measure. To
compute these measures, we calculate true positive, false positive, false negative and true negative values
by comparing the assigned and original values.

The basic combinations of actual vs assigned data category is a well-known concept in binary classifica-
tion. True positive (tp) indicates the number of retrieved information that classified as correct and actually
belongs to the correct result. In our case, the possible number of true positives is equal to the number of
concepts in the datasets we are experimenting with. False positive (fp) indicates the number of the incorrect
result but are classified as a correct result. False negative (fn) indicates information that is classified as
false but it is not actually false. False negative is computed based on the possible number of true positive
links minus true positive links that are found, so

fn = |concept| − tp.

True negatives (tn) are the number of classes that are classified as false and are actually false. True negative
is a result of the subtraction of Cartesian product cardinality between two sets in the compared concepts
with the sum of true positives, false positives, and false negatives, so

tn = (|concept1| × |concept2|)− (tp+ fp+ fn).

F-Measure is then calculated as a harmonic mean of precision and recall.

F −Measure = 2 ∗ precision ∗ recall
precision+ recall

In this paper, we attempt to answe rthe following four research questions (RQ):

• RQ1. Which string similarity measures provide the highest F-Measure in interlinking fiscal classifica-
tion concepts?

• RQ2. What is the impact of applying a similarity threshold for interlinking concepts between trans-
lated classification?
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• RQ3. How robust is the similarity measure performance when the language pairs are changed?

• RQ4. Different similarity measures have different computational performance. Which similarity mea-
sures have faster computational performance, and is there any trade-off between faster computational
performance and the resulting F-Measure?

6.2. Experimental configuration and result
6.2.1. SILK framework experiment configuration

In the initial experiment, we use German and Spanish concept from CPV classification. Comput-
ing similarity between translated string is done at first by utilizing SILK Framework which implements
sequence-based similarity matching (Jaro, Jaro Winkler, Levenshtein, Normalized Levenshtein, qGrams and
Substring) as well as set-based similarity matching (Token-wise, Soft-Jaccard, Dice and Jaccard). Other
than performing tokenization for set-based similarity measure and changing the distance threshold, we use
default parameters in SILK Framework. Comparison of strings leads to a distance threshold which is defined
as the maximum distance two strings allowed to have. The more distance threshold value is set, the more
links can be found, but there are more false-positive links discovered. The experiment result is then stored as
an ontology alignment XML format17, which later converted to CSV and then processed for analytics using
a python script. We use the latest stable version of SILK Framework v2.7.1, at the time of our experiment.

6.2.2. SILK framework experiment result
From our experiment using the SILK Framework, the similarity measure that yields the biggest F-

Measure score is Substring, with 0.501 F-Measure scores as the distance threshold is set to 0.2. In our
particular use case, other similarity measures that provide a relatively good F-Measure score are qGrams
(F-Measure = 0.453, distance threshold = 0.4) and Soft Jaccard (F-Measure = 0.446, distance threshold =
0.4). The result of the experiment using SILK framework is provided in detail on Table 7. The corresponding
F-Measure chart for the SILK experiment is provided in Figure 4.

On low distance thresholds (i.e. 0.0), it is fast to use SILK Framework for most similarity measures,
except for some similarity measures that are failed at the 0.0 distance threshold. On Table 7, the fields
that are marked as an asterisk (*) in the table indicate that those fields yield out of memory error during
the experiment, hence an increase in the higher distance threshold can not be done. On the other hand,
there is a problem with Cosine similarity measure during our experiment, and we can not proceed with
any of the thresholds, which is indicated with dash (-) in Table 7. This limitation prevents our further
experiment using higher distance thresholds. As a result, in similarity experiments using SILK Framework,
only limited thresholds can be presented. For this reason, we deviated from using SILK Framework for
further experiments and continue with our IOTA framework for the experiment as we described in section 5.

6.2.3. IOTA Framework Evaluation Configuration
The evaluation is conducted on a cluster of three workstations, each consists of 256 GB RAM, and each

has four AMD OptheronTM 6376 2.3 GHz processors. Each processor has 16 cores, totaling 64 cores in each
workstation. One workstation is used as a Spark driver, and two others are used as Spark workers. We use
Apache Spark 2.3.1 on our cluster during our experiment.

6.2.4. IOTA Framework Experiment Result
IOTA Framework provides several experiment results. Execution time for each language pair in the

cluster is compared in Figure 5. We present the result of F-Measure values from each language pairs
experiment in Table 8, Table 9, and Table 10, respectively The more intense the color of the cell within those
tables, the higher the F-Measure values are. The summarized top-10 F-Measure score for each similarity
measure and the filter is summarized in Table 11. The charts for these F-Measure scores from Table 8 to
Table 10 are provided in Figure 7, Figure 8, and Figure 9. The radar chart of aggregated average score

17http://alignapi.gforge.inria.fr/format.html
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Similarity Type
Similarity 

Measure

Distance 

Threshold
Found TP FP FN TN Precision Recall F-Measure

0.0 2,207 1,995 212 7,459 89,368,450 0.904 0.211 0.342

0.2 3,952 2,671 1,281 6,783 89,367,381 0.676 0.283 0.398

0.4 31,543 4,315 27,228 5,139 89,341,434 0.137 0.456 0.211

0.6 417,618 6,531 411,087 2,923 88,957,575 0.016 0.691 0.031

0.0 2,207 1,995 212 7,459 89,368,450 0.904 0.211 0.342

0.2 2,372 2,114 258 7,340 89,368,404 0.891 0.224 0.358

0.4 5,479 3,017 2,462 6,437 89,366,200 0.551 0.319 0.404

0.6 46,383 4,597 41,786 4,857 89,326,876 0.099 0.486 0.165

0.0 2,844 2,432 412 7,022 89,368,250 0.855 0.257 0.396

0.2 3,179 2,658 521 6,796 89,368,141 0.836 0.281 0.421

0.4 7,237 3,722 3,515 5,732 89,365,147 0.514 0.394 0.446

0.6 63,112 5,545 57,567 3,909 89,311,095 0.088 0.587 0.153

Token Wise 0.0 * * * * * * * *

Cosine 0.0 - - - - - - - -

0.0 2,179 1,968 211 7,486 89,368,451 0.903 0.208 0.338

0.2 47,324 4,324 43,000 5,130 89,325,662 0.091 0.457 0.152

0.4 * * * * * * * *

0.0 2,179 1,968 211 7,486 89,368,451 0.903 0.208 0.338

0.2 255,495 5,376 250,119 4,078 89,118,543 0.021 0.569 0.041

0.4 * * * * * * * *

0.0 2,179 1,968 211 7,486 89,368,451 0.903 0.208 0.338

0.2 2,179 1,968 211 7,486 89,368,451 0.903 0.208 0.338

0.4 2,179 1,968 211 7,486 89,368,451 0.903 0.208 0.338

0.6 2,179 1,968 211 7,486 89,368,451 0.903 0.208 0.338

0.0 2,179 1,968 211 7,486 89,368,451 0.903 0.208 0.338

0.2 4,922 3,066 1,856 6,388 89,366,806 0.623 0.324 0.427

0.4 63,124 4,674 58,450 4,780 89,310,212 0.074 0.494 0.129

0.6 * * * * * * * *

0.0 2,192 1,981 211 7,473 89,368,451 0.904 0.210 0.340

0.2 3,001 2,635 366 6,819 89,368,296 0.878 0.279 0.423

0.4 9,836 4,365 5,471 5,089 89,363,191 0.444 0.462 0.453

0.6 136,028 6,500 129,528 2,954 89,239,134 0.048 0.688 0.089

0.0 2,262 2,043 219 7,411 89,368,443 0.903 0.216 0.349

0.2 7,907 4,347 3,560 5,107 89,365,102 0.550 0.460 0.501

0.4 35,881 5,791 30,090 3,663 89,338,572 0.161 0.613 0.255

0.6 150,071 6,790 143,281 2,664 89,225,381 0.045 0.718 0.085

Jaro

Sequence-based

Dice

Jaccard

Soft Jaccard

Set-based

Jaro Winkler

Substring

qGrams

Normalized 

Levenshtein

Levenshtein

Table 7: Different similarity measures performance for mapping concepts originally from German and Spanish datasets using
SILK Framework. Asterisk (*) sign indicates out of memory error, hence these algorithms are not scalable, while dash (-
) indicates other error during the experiment. Several similarity measures here are not robust to the change of distance
thresholds.
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Figure 4: F-Measure chart of different similarity measures and distance thresholds experimented using SILK Framework. A
blank space in the diagram indicates the unavailability of the F-Measure value for that particular similarity measure/filter
mostly due to scalability reasons. In this comparison, Substring yields the highest F-Measure score, followed by qGrams and
Jaccard.

is provided in Figure 10, and broken down into (1) bag-based, hybrid-based, and phonetic-based similarity
measures; (2) sequence-based similarity measures; (3) set based similarity measures. These figures and tables
are used to highlight the findings from our experiment.
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Figure 5: Execution time (hours, on a logarithmic scale) in our cluster. The cluster performs more than 89 million string
comparisons. TF-IDF and Soft TF-IDF similarity measure have the longest execution time due to their complexity. Most of
the other similarity measures provide decent computational performance.

6.3. Discussion
Our experiments with IOTA framework show that finding similar concept is reliable and scalable for all

threshold, even though some similarity measures used within IOTA need more time for the computation.
Token Sort provides the IOTA framework the highest F-Measure score when the similarity threshold is
estimated properly. TF-IDF provides a high average F-Measure score which is robust across similarity
threshold change, yet TF-IDF needs significant computational resources which we discuss in detail on the
following subsections.
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Figure 6: The plot for average F-Measure score, minimum F-measure score, maximum F-measure score and sample standard
deviation for each language as similarity threshold set to 0.95. Even though the TF-IDF similarity score takes a long time to
compute, it has the minimum standard deviation with a relatively good F-Measure score compared to other similarity measures.
On the other hand, Token Sort yields the maximum F-Measure and needs much less computational time compared to TF-IDF,
but it has a high standard deviation.

Similarity Threshold 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

TF-IDF 0.280 0.337 0.388 0.437 0.479 0.511 0.532 0.543 0.540 0.522 0.455

Jaccard 0.241 0.364 0.424 0.487 0.496 0.501 0.494 0.476 0.466 0.465 0.465

Dice 0.067 0.152 0.191 0.241 0.363 0.424 0.487 0.501 0.482 0.465 0.465

Tversky Index 0.067 0.152 0.191 0.241 0.363 0.424 0.487 0.501 0.482 0.465 0.465

Cosine 0.092 0.145 0.205 0.240 0.335 0.422 0.498 0.501 0.482 0.465 0.457

Levenshtein 0.040 0.075 0.122 0.202 0.292 0.391 0.466 0.493 0.486 0.452 0.441

Token Sort 0.011 0.023 0.048 0.093 0.178 0.311 0.460 0.545 0.548 0.507 0.459

Editex 0.014 0.031 0.059 0.109 0.183 0.285 0.409 0.472 0.482 0.453 0.441

Ratio 0.012 0.023 0.043 0.077 0.143 0.244 0.376 0.478 0.510 0.485 0.441

Generalized Jaccard 0.003 0.004 0.009 0.021 0.047 0.100 0.219 0.377 0.482 0.513 0.465

Bag Distance 0.001 0.001 0.002 0.004 0.011 0.036 0.148 0.415 0.503 0.474 0.455

Overlap Coefficient 0.015 0.078 0.079 0.092 0.182 0.191 0.252 0.315 0.317 0.317 0.317

Jaro 0.000 0.000 0.001 0.004 0.019 0.058 0.133 0.296 0.463 0.487 0.441

Jaro-Winkler 0.000 0.000 0.001 0.003 0.010 0.023 0.035 0.070 0.249 0.486 0.441

Monge-Elkan 0.000 0.000 0.001 0.001 0.003 0.008 0.021 0.061 0.171 0.352 0.360

Partial Token Sort 0.001 0.003 0.006 0.011 0.022 0.036 0.078 0.164 0.221 0.223 0.216

Partial Ratio 0.001 0.003 0.006 0.011 0.021 0.032 0.068 0.141 0.195 0.205 0.202

Soundex 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027

Soft TF-IDF 0.001 0.001 0.002 0.002 0.003 0.005 0.008 0.013 0.021 0.034 0.042

German - Spanish

Table 8: F-Measure values of different string similarity measures for mapping concepts originally from German and Spanish
datasets. TF-IDF, Jaccard, and Dice have the best F-Measure scores when it is averaged by the similarity thresholds. Token-
Sort provides the best F-Measure score as the similarity threshold is set to 0.90.
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Figure 7: F-Measure chart of different similarity measures and filters for matching strings between translated German and
Spanish datasets, as shown in Table 8. The performance reaches a peak as the similarity threshold is set to 0.90.

Similarity Threshold 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

TF-IDF 0.283 0.340 0.393 0.442 0.485 0.517 0.537 0.548 0.544 0.526 0.456

Jaccard 0.282 0.413 0.468 0.513 0.511 0.512 0.497 0.478 0.466 0.465 0.465

Dice 0.073 0.178 0.234 0.282 0.412 0.468 0.513 0.512 0.484 0.466 0.465

Tversky Index 0.073 0.178 0.234 0.282 0.412 0.468 0.513 0.512 0.484 0.466 0.465

Cosine 0.106 0.169 0.242 0.281 0.371 0.466 0.515 0.512 0.485 0.466 0.456

Levenshtein 0.042 0.080 0.131 0.220 0.311 0.404 0.470 0.492 0.482 0.453 0.445

Token Sort 0.011 0.024 0.049 0.095 0.182 0.319 0.466 0.548 0.544 0.504 0.459

Editex 0.013 0.032 0.061 0.115 0.194 0.298 0.418 0.475 0.480 0.455 0.445

Ratio 0.012 0.023 0.045 0.081 0.152 0.263 0.395 0.486 0.502 0.481 0.445

Generalized Jaccard 0.003 0.004 0.009 0.021 0.048 0.102 0.229 0.394 0.486 0.504 0.465

Bag Distance 0.001 0.001 0.002 0.005 0.011 0.037 0.155 0.425 0.503 0.470 0.454

Overlap Coefficient 0.015 0.091 0.093 0.104 0.215 0.224 0.268 0.319 0.319 0.319 0.319

Jaro 0.000 0.000 0.001 0.004 0.020 0.073 0.170 0.345 0.483 0.486 0.445

Jaro-Winkler 0.000 0.000 0.001 0.003 0.011 0.027 0.046 0.100 0.309 0.497 0.445

Monge-Elkan 0.000 0.000 0.001 0.001 0.003 0.008 0.022 0.067 0.187 0.355 0.363

Partial Token Sort 0.001 0.003 0.006 0.011 0.022 0.034 0.080 0.184 0.260 0.266 0.261

Partial Ratio 0.001 0.003 0.005 0.010 0.019 0.030 0.067 0.154 0.232 0.251 0.249

Soundex 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034

Soft TF-IDF 0.001 0.001 0.002 0.002 0.003 0.005 0.008 0.013 0.022 0.035 0.043

German - French

Table 9: F-Measure values of different string similarity measures for mapping concepts originally from German and French
datasets. Token Sort remains the similarity measure that yields the highest F-Measure, although the optimum similarity
threshold is 0.85 instead instead of 0.90.
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Figure 8: F-Measure chart of different similarity measures and filters for matching strings between translated German and
French datasets, as shown in Table 9. There is no significant difference as compared to the chart from German-Spanish dataset
(Figure 7).

Similarity Threshold 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

TF-IDF 0.297 0.360 0.420 0.474 0.523 0.566 0.598 0.615 0.618 0.608 0.564

Jaccard 0.227 0.396 0.452 0.556 0.595 0.605 0.605 0.587 0.578 0.577 0.577

Dice 0.055 0.135 0.178 0.227 0.395 0.452 0.556 0.605 0.592 0.577 0.577

Tversky Index 0.055 0.135 0.178 0.227 0.395 0.452 0.556 0.605 0.592 0.577 0.577

Cosine 0.080 0.128 0.192 0.226 0.356 0.450 0.568 0.605 0.593 0.577 0.562

Levenshtein 0.030 0.060 0.102 0.177 0.266 0.375 0.493 0.559 0.564 0.548 0.536

Token Sort 0.009 0.018 0.036 0.068 0.132 0.249 0.426 0.585 0.645 0.617 0.571

Editex 0.010 0.023 0.046 0.091 0.160 0.259 0.407 0.521 0.560 0.549 0.536

Ratio 0.009 0.017 0.032 0.061 0.117 0.214 0.357 0.501 0.571 0.564 0.536

Generalized Jaccard 0.003 0.004 0.009 0.021 0.044 0.093 0.213 0.397 0.558 0.607 0.577

Bag Distance 0.001 0.001 0.002 0.004 0.011 0.034 0.141 0.442 0.598 0.587 0.566

Overlap Coefficient 0.011 0.072 0.073 0.085 0.179 0.187 0.286 0.355 0.356 0.356 0.356

Jaro 0.000 0.000 0.001 0.003 0.018 0.069 0.154 0.321 0.520 0.560 0.536

Jaro-Winkler 0.000 0.000 0.001 0.003 0.010 0.026 0.047 0.103 0.286 0.553 0.536

Monge-Elkan 0.000 0.000 0.001 0.001 0.003 0.007 0.018 0.056 0.172 0.395 0.424

Partial Token Sort 0.001 0.003 0.005 0.009 0.018 0.030 0.068 0.151 0.227 0.240 0.234

Partial Ratio 0.001 0.003 0.005 0.008 0.016 0.025 0.053 0.114 0.189 0.211 0.208

Soundex 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036

Soft TF-IDF 0.001 0.001 0.002 0.002 0.003 0.005 0.008 0.014 0.023 0.037 0.051

French - Spanish

Table 10: F-Measure chart of different similarity measures and filters for matching strings between translated French and
Spanish datasets. The French - Spanish language pair yields the highest F-Measure (0.645) compared to previous language
pairs (0.548 for both of previous language pairs). Token Sort remains the best performing algorithms when the similarity
threshold is properly set.
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Figure 9: F-Measure chart of different similarity measures and filters for matching strings between translated French and
Spanish datasets, as shown in Table 10. It consistently has similar patterns with Figure 7 and Figure 8 regarding similarity
thresholds and similarity measures.

Rk. FM Prec. Rec. Similarity Measure Thres. Rk. FM Prec. Rec. Similarity Measure Thres. Rk. FM Prec. Rec. Similarity Measure Thres.

1 0.6450 0.8316 0.5269 Token Sort 0.90 1 0.5483 0.6501 0.4741 Token Sort 0.85 1 0.5476 0.8258 0.4096 Token Sort 0.90

2 0.6175 0.8763 0.4767 TF-IDF 0.90 2 0.5479 0.7684 0.4257 TF-IDF 0.85 2 0.5452 0.6425 0.4735 Token Sort 0.85

3 0.6170 0.9150 0.4654 Token Sort 0.95 3 0.5444 0.8486 0.4008 TF-IDF 0.90 3 0.5432 0.7802 0.4166 TF-IDF 0.85

4 0.6153 0.8048 0.4980 TF-IDF 0.85 4 0.5442 0.8187 0.4076 Token Sort 0.90 4 0.5402 0.8554 0.3948 TF-IDF 0.90

5 0.6084 0.9171 0.4552 TF-IDF 0.95 5 0.5366 0.6626 0.4508 TF-IDF 0.80 5 0.5325 0.6684 0.4425 TF-IDF 0.80

French-Spanish German-French German-Spanish

Table 11: Top five F-Measure (FM), Precision (Prec.), Recall (Rec.) scores and their corresponding similarity measure and
thresholds (Thresh.). Token Sort and TF-IDF yield the highest F-Measure scores when the similarity thresholds is set from
0.80 upwards.
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6.3.1. Performance evaluation
In the discussion section, we categorize the similarity measures into three main categories: (1) bag-

based, hybrid-based and phonetic-based similarity measures (2) sequence-based similarity measures and (3)
set-based similarity measures. For each category, the F-Measure score is averaged by language pairs.

Hybrid similarity measures are designed to consider misspelled tokens (Doan et al., 2012). In the hybrid
similarity measure category, Generalized Jaccard provides the best F-Measure but it is sensitive to similarity
threshold values. In this experiment, we use default parameter values in the py_stringmatching library (see
Table 5), which uses Jaro as secondary string similarity measure and 0.5 as similarity threshold. The
result can potentially be improved if a better performing, secondary, string similarity measure is chosen,
for example, Levenshtein instead of Jaro (see Tables and Diagrams in subsubsection 6.2.4). The same
tuning can also be made for Monge-Elkan and Soft TF-IDF to improve their result. The only bag-based
similarity measure, TF-IDF, provides better F-Measure value than Generalized Jaccard and other hybrid-
based similarity measures. TF-IDF can capture insignificant words from the set of given corpus, and use it
to make the result more relevant.

Phonetic-based algorithms are intended to match similarly sounding words. Intuitively, phonetic algo-
rithms do not fit in our particular use case for matching translated multilingual concepts. As can be seen
in the result section, Soundex has low F-Measure scores across language pairs due to its binary distinction
of similar concepts. Editex, despite belongs to the phonetic algorithm category, provides much higher F-
Measure score as compared to Soundex for phonetic similarity measures. This might be because Editex
improves the character grouping on Soundex and combines it with Levenshtein-like similarity measure (see
Table 4), making the Soundex similarity measures are much less restrictive. The difference between the two
are highlighted in Figure 10(a), which shows a low average F-Measure score for Soundex, and in contrast,
Editex is surprisingly decent for this task.

The best F-Measure score for the sequence-based similarity measure category is provided by Token Sort,
as illustrated in Figure 10(b). In our use case, this makes sense because the result of the translation may
end up as similar words, but arranged in a different phrase. After removing non-ASCII characters, removing
trailing white spaces, and sorting these phrases, ratio similarity measure counts the ratio between matching
elements and total elements from both compared strings. In overall algorithm category, Token Sort provides
the best F-Measure score across all the language pairs we have experimented with, as shown in Table 11, as
well as the diagrams in Figure 7, Figure 8, and Figure 9.

In the set-based similarity measure category, many similarity measures share close results as can be seen
from Figure 10(c). This may be due to the similar formulation of the set-based similarity measures, which
are mostly based on the size of shared tokens. The highest average F-Measure value across three language
pairs, 0.54, is shared by many set-based similarity measures, such as Cosine-Ochiai, Dice and Tversky Index,
when the filter configuration is set to 0.85. The same F-Measure value (0.54) is also found on Jaccard when
the filter value is set to be 0.75.

6.3.2. Similarity thresholds
Generally, the effective similarity threshold values, i.e., the filter that provides a consistently good F-

Measure value could not be determined as it can be seen from Table 8, Table 9, and Table 10. The values
of F-Measure score in these tables show that some similarity measures are sensitive to similarity threshold
values, except, for example, TF-IDF and Jaccard which still provide a relatively high F-Measure score
across different similarity thresholds values, and Soft TF-IDF which provides low F-Measure score values
across similarity thresholds. Figure 6 shows that Token Sort has a high standard deviation and sensitive
to similarity threshold change, but also yield the highest F-Measure on three language pairs. Token Sort is
sensitive to change on similarity thresholds. It is also observed that highest filter score does not guarantee
that the F-Measure will be higher, but the F-Measure score tends to be higher with the higher filter score.

6.3.3. Language pairs
There is a difference on F-Measure performance across different translated language pairs. The best

language pair in our experiment is FR-ES, followed by DE-FR and at last DE-ES. The correlation across
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Figure 10: Average F-Measure on different similarity measures and filters across three language pairs. The further the threshold
line from the center of the polygon, the more F-Measure score it has. (a) Bag-/Hybrid-/Phonetic-based similarity measures have
various performance. TF-IDF provides a robust performance against most similarity thresholds while Editex and Generalized
Jaccard also provide a decent performance but not robust to threshold change. (b) Sequence-based similarity measures are
sensitive to threshold change, with Token Sort, provides the highest F-Measure. (c) Set-based similarity measures yield similar
performance, and are also sensitive to threshold change.

DE-ES DE-FR FR-ES DE-ES DE-FR FR-ES DE-ES DE-FR FR-ES DE-ES DE-FR FR-ES

DE-ES 1.00 1.00 0.96 DE-ES 1.00 0.92 0.90 DE-ES 1.00 1.00 0.88 DE-ES 1.00 1.00 0.98

DE-FR 1.00 1.00 0.96 DE-FR 0.92 1.00 0.91 DE-FR 1.00 1.00 0.88 DE-FR 1.00 1.00 0.98

FR-ES 0.96 0.96 1.00 FR-ES 0.90 0.91 1.00 FR-ES 0.88 0.88 1.00 FR-ES 0.98 0.98 1.00

Sim. Threshold: 0.85 Sim. Threshold: 0.9 Sim. Threshold: 0.95 Sim. Threshold:  1

(d)(c)(b)(a)

Figure 11: Spearman Correlation between different language pairs for different thresholds: a) 0.85, b) 0.90, c), 0.95, d) 1.00.
Each language pairs are positively and strongly correlated to each other, with the lowest value of correlation score 0.882 between
German-French and French-Spanish when the similarity threshold is set to 0.95.

different language pairs are very high, as illustrated in four different similarity threshold in Figure 11(a),
Figure 11(b), Figure 11(c), and Figure 11(d) for similarity threshold = 0.85, 0.90, 0.95 and 1.00 respectively.
The lowest Spearman correlation value between all the language pairs is between German-French and French-
Spanish with the value of 0.882 when the similarity threshold is set to 0.95. This indicates that regardless
of language pairs, using the language pairs we experiment with, the resulting F-measure score from the
combination of similarity measures and threshold matrix stays highly correlated.

6.3.4. Execution time
Execution time for each similarity varies to a large difference, depending on the complexity of the

measures. There are 89.3 million comparisons performed to map the concepts in our experiment, hence the
computation process required could take a long time. This can be seen in the logarithmic chart on Figure 5.
The execution time in the cluster highlights that two of the tested similarity measures, TF-IDF and Soft
TF-IDF, performed very slow compared to the other similarity measures. TF-IDF and Soft TF-IDF build a
corpus first and use the corpus along with compared labels, instead of directly use the strings or tokens from
the compared labels done by other similarity measures. Despite the slow performance, TF-IDF provides great
F-Measure values and those values are robust to the change of filter values since, by nature, TF-IDF discounts
the importance of less-determining words. Jaro and Jaro-Winkler are implemented using Cython18 within
the library (indicated with an asterisk in Table 5) so, in theory, these similarity measures should have a faster
performance compared to pure-Python implementation. Cython is designed to approach the performance
of C as a compiled programming language, instead of the Python as an interpreted programming language.

18https://cython.org/
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However, cythonized implementation on those similarity measures do not significantly perform differently
compared to other similarity measures that are not implemented with Cython. Most of the similarity
measures took about only several minutes or less than an hour to run in the cluster, especially set-based
similarity measures.

The robustness of TF-IDF can be used as a default choice for linking between multilingual concepts.
However, the computational complexity for TF-IDF can be an issue if the datasets to be linked is high in
volume. Token sort yields the highest F-Measure score in our experiment, and computational complexity is
far less costly compared to TF-IDF, but a proper similarity threshold needs to be carefully approximated
for Token Sort to yield the best result.

7. Conclusion and future work

In this paper, we have presented the IOTA framework that interlinks multilingual fiscal data by making
use of the fiscal classifications. IOTA is designed using the distributed in-memory scalable platform (Apache
Spark) to deal with the complex task of string similarity assessment for a large number of concepts. IOTA
provides nineteen different measures to assess the similarities of the concepts. We have tested the perfor-
mance of IOTA over data containing the three translated language pairs. We found that the best similarity
measure with the relatively low computational cost is Token Sort. It provides the highest F-Measure score
when the similarity threshold is properly approximated. TF-IDF also provides a high F-Measure across
different similarity thresholds at the expense of significantly longer execution time. The correlation between
language pairs shows a consistently high and positive correlation. IOTA can be easily adapted to be used
for other use cases and domains.

In the future, the work could be extended in several dimensions: First, the performance of other machine
translation tools could be compared. Second, it could be evaluated if additional preprocessing tasks improve
the performance and accuracy of the mappings (such as stop words removal, in which additional stop words
can be in specifically for open fiscal data domain). Third, a combination of multiple assessment methods
can be exploited. Fourth, for hybrid similarity measures, it can be assessed which specific string similarity
measure combination pairs would yield the best F-measure. Lastly, it is intended to integrate classifications
to public semantic knowledge bases (e.g., DBpedia), so that concepts published by public administrators
could be mapped to linked open data. We will also perform more experiments for integrating non-controlled
translated concepts.
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