978-1-7281-8899-7/21/$31.00 ©2021 IEEE
DOI 10.1109/ICSC50631.2021.00049

2021 IEEE 15th International Conference on Semantic Computing (ICSC)

Benchmarking RDF Metadata Representations:
Reification, Singleton Property and RDF*

Fabrizio Orlandi®

, Damien Graux

, Declan O’Sullivan

ADAPT SFI Research Centre, Trinity College Dublin, Dublin, Ireland

Abstract—RDF reification is a data modelling solution for
writing RDF statements about RDF statements. A set of ap-
proaches exist in the literature to express statement-level meta-
data, or “reified” statements, in RDF. They have primarily been
designed to attach additional contextual information to individual
triples, such as provenance, spatio-temporal validity, or certainty.
Practically, different methods have been developed to present
such metadata while complying with the RDF standard and
syntax. However, when effectively stored in triplestores, these
various solutions produce diverse results in terms of querying
performance, storage efficiency and usability. In this article, we
analyse these metrics across three popular reification approaches:
Standard Reification, Singleton Property and the recent RDF*.
We publish our benchmark evaluation resources so that the
community could expand and compare the study on different
datasets, reification approaches and storage implementations.

I. INTRODUCTION

The ability to express n-ary relations in RDF has always
interested the Semantic Web research community since the
creation of the first RDF specifications [I]P_-] This feature, often
called “reification” or “metadata representation” or “statement-
level metadata”, allows practitioners to express statements
about statements. Which is useful, for instance, when attaching
provenance [2], versioning [3|] and ownership of facts on a
statement-level and directly into a dataset [4].

As a consequence, different RDF metadata representation
approaches exist: from standard reification to named graphs to
singleton property. However, these strategies lead, in practice,
to different data models, representations and number of RDF
triples generated [5] (e.g. standard reification requires the use
of four additional triples for each reified statement). Making
it difficult to choose the most appropriate solution for the use
case at hand. Moreover, in order to help users generating and
maintaining their RDF statements of statements, Hartig et al.
recently introduced the RDF* & SPARQL* syntax [6], [7].
This solution has rapidly gained attention and popularity in the
last couple of years, mainly due to its simplicity in expressing
statement-level metadata and a wider adoption by triplestore
vendors.

For these reasons, there is a need for a benchmark that
allows users to compare different reification approaches and
different triplestore implementations. In this paper, we in-
troduce REF, the RDF REiFication benchmark. It provides

Send correspondence to F. Orlandi, E-mail: orlandif@tcd.ie
1“Reifying RDF (properly), and N3”, Tim Berners-Lee, 2005: https://www.
w3.org/Designlssues/Reify.html

resources, namely datasets and queries, that can be used to test
the performance of different metadata representation solutions,
including the recent RDF*. Performance can be measured
especially in terms of query execution time, usability, storage
size, adherence to standards and support by existing imple-
mentations.

Finally, in addition the benchmark description, we describe
some experiments leveraging REF for the evaluation of three
different approaches (reification, singleton property, RDF*)
in terms of database size and query execution time. The
evaluation shows a clear difference between the approaches
and demonstrates the usefulness of the benchmark.

We made all the resources easily accessible online. RD-
F/RDF* data dumps and SPARQL/SPARQL* queries, along
with instructions, are all published on Zenodo, with a persis-
tent URIE]

<https://doi.org/10.5281/zenodo.3894745>

The rest of the paper is organised as follows. Section
introduces the different reification approaches considered by
REF. Section[[Illand [Vl describe the REF benchmark resources
in terms of data and queries respectively. Then, Section
provides details on our experiments, before concluding the
paper with related work and conclusions.

II. EXPRESSING STATEMENTS OF STATEMENTS IN RDF

By construction, RDF statements [8] can only repre-
sent ‘flat” information under the form of triples subject
predicate object. It implies that both facts and their
metadata cannot be represented at the same level, meaning that
“Tolkien wrote the Lord of the Rings according to Wikipedia”
could be represented as:

:LOTR
tWiki

:Tolkien :wrote

:Fact :says

Obviously, these two RDF triples are not so far related together
as they do not share a common identifier. During the past
two decades, several methods have been developed in order
to be able to express meta-facts about already existing triples.
For example, some complex architecture can be designed to
have the data split into silos: some for real-data and others
about meta-data; such a paradigm implies to deal with several

2While more details about the REF Benchmark and the queries are
also available on GitHub: https:/github.com/dgraux/RDFStarObservatory/
tree/master/testSuits/REF-Benchmark

233

https://orcid.org/0000-0001-9561-4635
https://orcid.org/0000-0003-3392-3162
https://orcid.org/0000-0003-1090-3548
https://www.w3.org/DesignIssues/Reify.html
https://www.w3.org/DesignIssues/Reify.html
https://doi.org/10.5281/zenodo.3894745
https://github.com/dgraux/RDFStarObservatory/tree/master/testSuits/REF-Benchmark
https://github.com/dgraux/RDFStarObservatory/tree/master/testSuits/REF-Benchmark

RDF named graphs and led to the design of quad-stores where
an additional piece of information carries the context (subj
pred obj context).

In this study, we restrict our scope to methods that directly
deal with triples i.e. to methods that set up strategies to add
the metadata as triples within the knowledge graph. Until
now, three approaches have been mainly described: standard
reification, singleton property and RDF*.

A. Standard Reification [5]

The reification method has been proposed together with the
RDF primer standardised by the W3C [8]] and it relies on the
fact that RDF allows the representation of resources which
do not have URIs: i.e. the blank nodes. Practically, the idea
is to “step back” from the way information is expressed in
RDF by using blank nodes to refer to high-level statements
and then to split the information into pieces according to the
role each part of a statement has, such as its subject, its
predicate, its obJject and its metadata. Reconsidering
our “Lord of the Rings” example, we could reify it as follows:

_:x rdf:type rdf:Statement
_:x rdf:subject :Tolkien

_:x rdf:predicate :wrote

_:x rdf:object :LOTR

_:xX :says tWiki

This representation projects all the information on the same
level and creates blocks of triples sharing the same blank
node allowing therefore engines to process them together.
However, such a representation creates a large number of
triples, resulting in larger graphs posing scalability challenges.
And in addition, relying exclusively on blank nodes makes
the identification tasks harder since the SPARQL engines will
have to “dig” down to reach the object of the rdf: subject
predicate in order to know what entity is referred by a blank
node _: x, resulting in more complex processes.

B. Singleton Property [5]

In 2014, Nguyen et al. proposed an alternative approach [J5]
which would mainly rely on the predicates instead of the
subjects (as for the standard reification). In a nutshell, the
singleton property method amends the original predicate of
a statement with a unique predicate, in order to carry meta-
information in additional triples later. For instance, using the
singleton property, our running example becomes:

:Tolkien :wrote#l :LOTR
:wrote#l rdf:singletonPropertyOf :wrote
:wrote#l :says Wiki

Here, unlike with the reification method which splits the
facts by roles, we obtain with the singleton property a set
of triples where the original : wrote predicate is extended in
the original triple into :wrote#1. This new predicate is then
used as a subject to append additional facts. As a consequence
of this approach, the number of additional triples needed to
represent a fact and its metadata is reduced, as compared

to standard reification. Moreover, the general “shape” of the
triples remains the same as the method slightly amends the
original predicate, leaving the rest of the triples as intuitively
expected. As a downside, this method generates a high number
of unique predicates, equal to the number of reified statements.
This might create problems with standard indexing strategies
adopted by triplestores.

C. RDF* [7]

While both standard reification and singleton property stay
within the scope of the RDF standard, Hartig & Thomson
suggested to extend the standard’s syntax in order to allow
RDF graph nesting [|6]. Practically, their extension —RDF*—
offers a way of considering RDF graphs either as subjects
or objects of RDF triples. The syntax provides therefore the
possibility of recursively embedding graphs into graphs. The
various levels of knowledge provide to RDF*-graphs a struc-
ture where hypernodes can carry the lower-level information
and higher-edges encode metadata. Typically, our Tolkien-
based example is encoded using only one RDF* statement:

<< :Tolkien :wrote :LOTR >> :says :Wiki

Practically, the subject, included between << and >>, is itself
an RDF sub-graph for the base information and this sub-graph
is completed by a provenance statement “:says :Wiki”.
Notwithstanding, the use of a new syntax extension requires a
specific implementation of RDF engines and, therefore, limits
the adoption of this approach.

III. DATASET DESCRIPTION

In order to provide a benchmark resource for testing the
different reification methods we selected a real and already
existing dataset. The dataset used for the experiments in
this paper is the Biomedical Knowledge Repository (BKR)
dataset [10] by the U.S. National Library of Medicine. It has
been selected in order to make our results comparable (at least
partially) with previous work by Nguyen et al. [5]. In their
work, the authors compare their proposed approach, Singleton
Property (SP), against Standard Reification.

[Dataset
[Triples (x10°) [

[BKRR | BKR-S | BKR* |
1756 [1009 | 610 |

TABLE I: Size of the datasets in millions of triples.

[Metric [BKR-R [BKR-S [BKR-*]
N. Distinct “?s” 39,919,982 | 35,661,664 | 27,402,244
N. Distinct “?p” 6 33,630,338 674
N. Distinct “?0” 8,035,300 5,999,412 8,032,090
N. Distinct “?d” — — 1
N. Distinct “?e” — — 3,968,595
N. Distinct Classes 2,032,679

TABLE II: Datasets statistics, where the indicated variables
correspond to the SPARQL triple patterns {?s ?p 0.} for
BKR-R & BKR-S and {{{?s ?p ?0)) ?d ?e.} for BKR-*.

234

rdf:Statement

http://mor.nim...

rdf:type rdf:subject
['7:meta79268... rdf:predicate http://mor.nim...
rdf:object

provenir:derives_from T T

z/ - \\\
/ \

\:'http:ﬁmor.nlm...':l

\ /

Fig. 1: Example of a typical RDF molecule contained in the
BKR dataset, represented using standard RDF reification.

The dataset is a biomedical knowledge graph containing
over 30 million semantic statements extracted from PubMed’]
abstracts in addition to the Unified Medical Language Systenﬂ
(UMLS). Originally published in 2010 [10] [11], it has been
used by Nguyen et al. in 2014 to evaluate query efficiency
of Singleton Property. We collected the original BKR dataset
from [5] via the Internet Archiveﬂ as the dataset was not
available at the original URL indicated in the paper.

The original data is represented in RDF using the Singleton
model, serialised in N-Triples format. We converted it to the
Standard Reification model and also into RDF*, using the
available “RDFstarTools” developed in Java by O. Hartig et
alEl As a result of the different data models, the BKR dataset
modelled using reification (BKR-R) has 175.6 million triples
in total; the one based on singleton property (BKR-S) has
100.9 million triples; the RDF* dataset (BKR-*) amounts to
61.0 million total triples (Table [I).

The BKR dataset includes integrated biomedical data from
a variety of sources such as biomedical literature and ter-
minological knowledge sources such as the Unified Medical
Language System (UMLS). However the structure is quite
simple and can be illustrated as in Figure [I] Each biomedical

3https://pubmed.ncbi.nlm.nih.gov/
4https://www.nlm.nih.gov/research/umls/index.html
Shttps://web.archive.org/web/20190622010440/http://wiki.knoesis.org/
index.php/Singleton_Property
Shttps://github.com/RDFstar/RDFstarTools

statement is reified to express the source where it has been
derived from, hence tracking provenance of statements using
provenir:derived_from. In Table [lIl we provide some
statistics on the three BKR datasets provided in our bench-
mark. As we can see from the figures, the Singleton Property
model leads to a large amount of distinct properties. Which can
be an issue for triplestores whose indexes are not optimised
for a large number of predicates. At the same time, all the
predicates in a KG using standard Reification end up as objects
of the rdf : predicate property. As regards RDF*, we note
that in BKR the only predicate adding extra contextual in-
formation to the statements is provenir:derives_from.
This is used to add provenance information to each “regular”
binary statement in the BKR graph.

IV. CONSIDERED QUERIES

We use three representative series (A, B and F) of prove-
nance queries in this REF benchmark, to evaluate the query
performance on the three datasets (BKR-R, BKR-S and BKR-
*). Series A is obtained from the experiments conducted in
[10] by Sahoo et al. All 4 queries of set A include one
block of provenance-specific triple patterns related to one data
triple only. Therefore, Nguyen et al. [5]] created series B
with longer queries, where the lengths of actual data triple
patterns (excluding the metadata level) range from 1 to 3.
Although the length of these triple patterns looks small, their
corresponding SPARQL query patterns are relatively long, i.e.
up to 21 SPARQL triple patterns for BKR-R using reification.
Considering that some of the originally designed queries did
not work correctly on the BKR dataset{| we decided to
recreate them and add a few new ones (series F) to our
benchmark. For more details on series A and B queries we
refer to [5]]. All the queries have been included in the Zenodo
archive of our REF benchmark, linked in Section

Our series F query patterns have been designed with addi-
tional focus on SPARQL* query patterns and include a combi-
nation of both short and long queries. They have been designed
by our research group considering the use-case of representing
(and querying) provenance (or contextual/temporal informa-
tion) at a statement-level. They represent realistic queries
that one could perform on BKR, or a similar dataset, when
retrieving statement-level provenance information and/or com-
paring provenance metadata for different statements (triples).
Moreover, the queries have been designed to test the different
internal representations and indexes that triplestores might
have for RDF* or similar data models. For instance, some
queries (e.g. F-Q3) are computationally expensive and some
require a comparison (filter) between many graph patterns (e.g.
F-Q5). In Figure 2] the five “F” queries are depicted following

7Since June 2019 they are not available online anymore, only accessible
via the Internet Archive: https://web.archive.org/web/20190622010440/http://
wiki.knoesis.org/index.php/Singleton_Propertyl Moreover, the original queries
used named graphs, which were not included in the data dumps obtained via
the Internet Archive.

8All the queries are also available on our GitHub repository at:
https://github.com/dgraux/RDFStarObservatory/tree/master/testSuits/
REF-Benchmark/BKR

235

https://pubmed.ncbi.nlm.nih.gov/
https://www.nlm.nih.gov/research/umls/index.html
https://web.archive.org/web/20190622010440/http://wiki.knoesis.org/index.php/Singleton_Property
https://web.archive.org/web/20190622010440/http://wiki.knoesis.org/index.php/Singleton_Property
https://github.com/RDFstar/RDFstarTools
https://web.archive.org/web/20190622010440/http://wiki.knoesis.org/index.php/Singleton_Property
https://web.archive.org/web/20190622010440/http://wiki.knoesis.org/index.php/Singleton_Property
https://github.com/dgraux/RDFStarObservatory/tree/master/testSuits/REF-Benchmark/BKR
https://github.com/dgraux/RDFStarObservatory/tree/master/testSuits/REF-Benchmark/BKR

'
Q1 Q3
'
i
'
Pt H P
ex:property £ k H ex:property £ b
E 201) H = 201)
. .) . '
. / H . /
N ! el
H
i
'
2l : 2T
ex:starProp| 4 y i ex:starProp1 £ y
—H‘ ?Star01 ! —N\ 2Star0l = .
-~ = H i 1
.. o 1
" P I
QZ : ex:starProp2 £ \‘ . ’
I -
! | 7Star02 I,(—
e H
. . N ! Sel”
ex:property1 Yoot) i
3 ; ettt ittt ettt ettt
. /
- L4
'
i
'
'
- P H
ex:starProp o ‘\ ex:property2 ," H ; ex:property1 y
» 250t - > 702 : AL i
. '
4
ha g e :
'
:
' P
H ex:starProp1 £ Y
' L/ 98tar01 <~ -
___ i) \ ~
d 9 o N
Q5 ! o |
'’ 1
H - Li
H e h ’
] \]
! ——/ 2star02 € - “
3 N ex:starProp2 ’,
exURIA BXipropery ex:URI B : g
H
H
i
H exURLA exproperty2
e 0
ex:starProp1 £ “ :
—N‘ 7Star01 = - :
‘ -~
- Y a0 e e
=== 75tar03 t—
s~ U \\ ’
‘\ r o
—) 5tar02 € -
ex:starProp1 5 < ’ ex:starProp1
~="

exURI A Bxipopsdy2 @

exURL A Bxcpropedyd

Fig. 2: Structure of our proposed benchmark queries (series F), in addition to the queries (series A and B) proposed by Nguyen

et al. [EI] (using QueryVOWL notation [EI]).

the QueryVOWL notation. The figure shows the query patterns
in their SPARQL* version only. The red dashed line indicates
where a SPARQL “FILTER” clause is applied, either with
a “regex” filter on ?StarOl (for Ql & Q2), or with a
comparison filter (i.e., comparing ?Star0Ol with ?Star02
in Q3 and Q4 and additionally with ?Star03 in Q5).

Only very recently, a community of researchers and prac-
titioners has started an RDF* Community Group as part of
the W3C RDF dev community groupﬂ The REF benchmark
and the series of queries proposed in this article are already
covering some of the use cases proposed by this community:
mainly the use cases related to natural representation of
“property graph” data in RDF and annotation of triples with
contextual metadata. The use cases and documents of this

9In November 2020, the RDF* Community Group started collecting spec-
ifications, test cases and use cases for RDF* available at: https://w3c.github.
10/rdf-star/

community group would be very relevant for driving the design
of the proposed benchmark, however, at present they are still
being defined. In the near future, we plan to align our efforts
with the RDF* group and extend the benchmark in order to
cover the use cases collected by the community.

V. EXPERIMENTS

In this section we report on some experiments conducted to
compare three RDF reification approaches including standard
reification, singleton property and RDF*. These experiments
have been performed on the proposed REF benchmark to
show its usefulness. They are not meant as an exhaustive and
comprehensive set of experiments, as this would be beyond the
scope of this paper. In this regard, for completeness, several
triplestores would need to be tested using the proposed bench-
mark and the same experimental setup. However, even using
one triplestore, we show that there is a considerable difference
between the three approaches and data representations for

236

https://w3c.github.io/rdf-star/
https://w3c.github.io/rdf-star/

8000 A

6000

DB Size (MB)

4000

2000 -

—%- RDF*
L --@-- Reification
’ -+- Singleton

0 5000 10000 15000

20000 25000 30000 35000

Statements (x10°3)

Fig. 3: Growth of the database, in MB, for the three reification methods with increasing number of triples inserted.

statement-level metadata, especially in terms of storage size
and query efficiency. Our experiments are based on three main
quantitative criteria: number of triples (described in Sec. [III)),
storage size and query execution time.

For reproducibility, the datasets and the queries used in the
experiments are the same as the REF benchmark published
on Zenodo, with a persistent UR (see Section . As for the
experiments setup, the three datasets were loaded on a Stardog
triplestore running on a single node VM with a 4-cores CPU
and 32GB of main memory (8GB of JVM memory and 20GB
of direct memory allocated for Stardog version 7.3). We have
chosen Stardog for these first experiments as it was one of the
first triplestores with native support for RDF*. Stardog has
been running on a basic Debian VM with no extra services
running in parallel. More details on the SPARQL queries are
reported in Section

A. Storage Size

While in terms of number of triples the three RDF meta-
data representations present obvious differences (Section [III)).
Singleton Property shows approximately 40% reduction in
the number of triples, compared to Reification. RDF* shows
almost a 70% reduction in the number of triples compared
to Reification. However, in terms of database size, including
indexes and different data structures, the comparisons could be
much different. For this reason, we performed an experiment

10More details about the REF Benchmark and the queries are also avail-
able on GitHub: https://github.com/dgraux/RDFStarObservatory/tree/master/
testSuits/REF-Benchmark

by measuring the size of the database, in megabytes, with an
increasing number of triples being added to each of the three
KGs.

The results are reported in Figure [3| The considerable differ-
ences shown in this chart are due to the different compression
strategies and indexes adopted by Stardog, which are probably
optimised more for the standard reification case. It is clear
that, with Stardog, approaches such as singleton and RDF*
cause the database size to increase at a much faster rate than
reification.

B. Query Execution Time

Different RDF metadata representations affect not only the
way queries are designed (with RDF*/SPARQL* being the
most easy to use “syntactic sugar” for a knowledge engineer)
but also the query execution time. This is because data can be
represented and stored internally in a triplestore in different
ways and SPARQL/SPARQL* engines might be able to use
different strategies for query optimisation. This has been
shown already in the past in the state-of-the-art [12], [[13]. We
propose the REF Benchmark also for evaluating this aspect of
metadata representations, and for the first time we can use it to
compare the performance of different RDF* implementations
against “traditional” models.

For these experiments we use all the queries from sets A,
B and F described in Section Each query has been run
on the respective BKR dataset multiples times. We recorded
the time of the first (“cold”) execution of a query, with empty
cache, and the average time of the subsequent four (“warm”)

237

https://github.com/dgraux/RDFStarObservatory/tree/master/testSuits/REF-Benchmark
https://github.com/dgraux/RDFStarObservatory/tree/master/testSuits/REF-Benchmark

Statement-level Metadata - Models Comparison

Reif.1st run
= Reif-2nd-5th
= Star-lstrun
B Star-2nd-Sth
= Sing-Lst run
= Sing-2nd-5th

107

seconds (log)

0

AQL AQ2 AQ3 AQ4
queries

Fig. 4: Query execution time (in seconds) for all the models and the query series A & B by Nguyen et al. (log scale).

Statement-level Metadata - Models Comparison

Relf-1st run
mem Reif-2nd-5th
. Star-lst run
W Star-2nd-5th
e Sing-1st run
W Sing-2nd-5th

seconds

foi]
queries

Fig. 5: Query execution time (in seconds) for all the models and our proposed series F queries (log scale).

238

executions of the same query. The results are reported in
Figure [for query sets A & B and in Figure [5] for query set
F. Already with these initial experiments we can observe that
there are significant differences between the three approaches.
Singleton Property seems to have the worst performance of the
three overall. Probably because of the high number of unique
properties with long URIs that need to be generated with
that method. Additionally, triplestores’ indexes are usually
optimised for a lower number of distinct predicates than
distinct subjects or objects, and this is not the case with
Singleton. Interestingly, RDF* shows a greater reduction of
execution time after the first “cold” run, as compared to
standard reification (e.g. see B series queries and A-Q3, A-
Q4). For more complex queries, that present many more graph
patterns in the case of std. reification, we can observe a
clear difference in performance. In these cases (see e.g. A-
Q3, A-Q4, B-Q3, F-Q4, F-Q5) RDF* outperforms standard
reification. While the opposite happens with simpler queries
like B-Q1 and F-QI.

C. Discussion

While these experiments are not exhaustive, and are only
based on one triplestore, they show that the proposed REF
benchmark could be relevant for the research community
for testing different metadata representations. The benchmark
could also be used by triplestore vendors to improve their
performance, especially for the newer RDF* solutions. Inter-
estingly, by performing these experiments we also discovered
different behaviour and internal representations between differ-
ent triplestores implementing RDF*. We reported those issues
in [14] and created a repository for observing and reporting
on such issued]

VI. RELATED WORK

Various methods exist to express statements over a set of
RDF triples. More technically, we could say that these methods
are used to define n-ary relations (not only binary) in RDF
and/or OWL [1]]. Different solutions, or reification methods,
have been designed by experts in the community. The most
popular ones being (see Section |lI| for more details): standard
reiﬁcatio@ singleton property [5]], named graphs [15] (or
quads). However, these strategies usually lead to an extensive
amount of additional RDF triples generated [5], e.g. standard
reification requires the use of four additional triples for each
reified statement. In order to facilitate users in creating and
managing their RDF statements of statements, Hartig et al.
introduced the RDF* syntax [6], [[7]]. This syntactical extension
of the RDF standard has been received with enthusiasm by the
Semantic Web community| | and is now implemented by most

https://github.com/dgraux/RDFStarObservatory

Zhttps://www.w3.0rg/TR/2004/REC-rdf-primer-20040210/#reification

13The W3C Workshop on Web Standardization for Graph Data (2019) has
set a direction to bridge the Semantic Web and Property Graph communities
together indicating RDF* as a viable option. https://www.w3.org/Data/events/
data-ws-2019/index.html. In addition, a W3C working group is currently
establishing a use cases and requirements list for RDF* https://w3c.github.io/
rdf-star/UCR/rdf-star-ucr.html.

of the popular SPARQL engine

Following the need of expressing RDF metadata statements
and the different existing approaches to do so, researchers
have performed extensive comparative analyses. In particular,
Frey et al. [13] and Hernandez et al. [12] conducted de-
tailed comparisons and studying different RDF-based metadata
representations such as the ones discussed in our study (see
e.g. Section [lI] for more details on them) together with other
ones like n-ary relations or quad-stores. They both ([12],
[13[]) design their own methodologies to compare engines
and approaches, e.g. Hernandez [12] focuses on Wikidata.
However, they did not consider RDF* in their discussions.

More generally, multiple benchmarks have been designed
to report and compare specific facets of RDF and SPARQL.
For example, Alu¢ et al. developed WatDiv to evaluate
the behaviour of engines over the conjunctive fragment of
SPARQL [16]. On a different note, Guo et al. review the OWL
inferring capabilities of stores with LUBM [17]. Alternatively,
the BEAR benchmark of Fernandez et al. aims at comparing
storage strategies for RDF archives [18]]. Therefore, our pro-
posed benchmark completes the set of available benchmarks
for the community by covering the reification aspects of RDF.

Finally, these benchmarks allow the community to con-
duct extensive comparative analyses such as [19] for the
distributed SPARQL engines, or [20] to compare SPARQL
engines according to use-case criteria. Our benchmark offers,
for instance, a method to extend the discussions which have
already been started in [[I14] about RDF* implementations of
commercial RDF stores.

VII. CONCLUSION AND FUTURE WORK

In this paper we introduced REF, the first benchmark for
RDF REiFication approaches. It consists of a set of equivalent
SPARQL (and SPARQL*) queries and the corresponding RDF
(and RDF*) datasets, for different metadata representations.
These can be used by the community as a reference for testing
the performance of different storage solutions. The data used
in this release of the benchmark is derived from the Biomed-
ical Knowledge Repository (BKR) project. We translated the
original BKR dataset, which was available in RDF using
the singleton property reification model, into standard RDF
reification and RDF*. We performed some experiments using
these resources to show the effectiveness of the benchmark in
evaluating the performance of a triplestore, e.g. in terms of
storage size and query execution time. Our experiment shows
considerable differences between the three approaches even
on one single SPARQL engine. In the future, we plan to add
new data and queries to the benchmark and use it to compare
different triplestores.

4https://github.com/dgraux/RDFStarObservatory

239

https://github.com/dgraux/RDFStarObservatory
https://www.w3.org/TR/2004/REC-rdf-primer-20040210/#reification
https://www.w3.org/Data/events/data-ws-2019/index.html
https://www.w3.org/Data/events/data-ws-2019/index.html
https://w3c.github.io/rdf-star/UCR/rdf-star-ucr.html
https://w3c.github.io/rdf-star/UCR/rdf-star-ucr.html
https://github.com/dgraux/RDFStarObservatory

ACKNOWLEDGMENTS

This research was conducted with the financial support
of the European Union’s Horizon 2020 research and inno-
vation programme under the Marie Sktodowska-Curie Grant
Agreements No. 801522 and No. 713567 at the ADAPT
SFI Research Centre at Trinity College Dublin. The ADAPT
SFI Centre for Digital Media Technology is funded by Sci-
ence Foundation Ireland through the SFI Research Centres
Programme and is co-funded under the European Regional
Development Fund (ERDF) through Grant #13/RC/2106.

[2]

[3]

[4]

[5]

[6]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

P. Hayes, J. Carroll, C. Welty, M. Uschold, B. Vatant, F. Manola,
I. Herman, and J. Lawrence, “Defining N-ary Relations on the
Semantic Web,” W3C Working Group Note, 2006. [Online]. Available:
http://www.w3.0rg/TR/2006/NOTE-swbp-n-aryRelations-20060412/

F. Orlandi and A. Passant, “Modelling provenance of DBpedia resources
using Wikipedia contributions,” Journal of Web Semantics, vol. 9, no. 2,
pp. 149-164, 2011.

M. Frommhold, R. N. Piris, N. Arndt, S. Tramp, N. Petersen, and
M. Martin, “Towards versioning of arbitrary RDF data,” in Proceedings
of the 12th International Conference on Semantic Systems, 2016, pp.
33-40.

J. Frey, K. Miiller, S. Hellmann, E. Rahm, and M.-E. Vidal, “Evaluation
of metadata representations in RDF stores,” Semantic Web, vol. 10, no. 2,
pp. 205-229, 2019.

V. Nguyen, O. Bodenreider, and A. Sheth, “Don’t like RDF reification?
Making statements about statements using singleton property,” in Pro-
ceedings of the 23rd international conference on World wide web, 2014,
pp. 759-770.

O. Hartig and B. Thompson, “Foundations of an alternative approach to
reification in RDF,” arXiv preprint arXiv:1406.3399, 2014.

O. Hartig, “Foundations of RDF* and SPARQL* (an alternative ap-
proach to statement-level metadata in RDF),” in 11th Alberto Mendelzon
International Workshop on Foundations of Data Management (AMW),
2017.

F. Manola, E. Miller, B. McBride et al., “RDF primer,” W3C recom-
mendation, vol. 10, no. 1-107, p. 6, 2004.

F. Haag, S. Lohmann, S. Siek, and T. Ertl, “QueryVOWL: A visual
query notation for linked data,” in Proceedings of ESWC 2015 Satellite
Events, ser. LNCS, vol. 9341. Springer, 2015, pp. 387-402.

S. S. Sahoo, O. Bodenreider, P. Hitzler, A. Sheth, and K. Thirunarayan,
“Provenance context entity (PaCE): Scalable provenance tracking for
scientific RDF data,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 2010.

S. S. Sahoo, V. Nguyen, O. Bodenreider, P. Parikh, T. Minning, and A. P.
Sheth, “A unified framework for managing provenance information in
translational research,” BMC Bioinformatics, 2011.

D. Herndndez, A. Hogan, and M. Krotzsch, “Reifying RDF: What
works well with wikidata?” in Proceedings of the 11th International
Workshop on Scalable Semantic Web Knowledge Base Systems co-
located with 14th International Semantic Web Conference (ISWC
2015), vol. 1457. CEUR-WS, 2015, pp. 32-47. [Online]. Available:
http://ceur-ws.org/Vol- 1457/

J. Frey, K. Miiller, S. Hellmann, E. Rahm, and M. E. Vidal, “Evaluation
of metadata representations in RDF stores,” Semantic Web, vol. 10, no. 2,
pp. 205-229, 2019.

F. Orlandi, D. Graux, and D. O’Sullivan, “How many stars do you see
in this constellation?” in Proceedings of ESWC 2020 Satellite Events,
2020.

J. J. Carroll, C. Bizer, P. Hayes, and P. Stickler, “Named graphs,”
Journal of Web Semantics, vol. 3, no. 4, pp. 247-267, dec
2005. [Online]. Available: https:/linkinghub.elsevier.com/retrieve/pii/
S1570826805000235

G. Alug, O. Hartig, M. T. Ozsu, and K. Daudjee, “Diversified stress
testing of RDF data management systems,” in International Semantic
Web Conference. Springer, 2014, pp. 197-212.

[17]

[18]

[19]

[20]

240

Y. Guo, Z. Pan, and J. Heflin, “LUBM: A benchmark for OWL
knowledge base systems,” Journal of Web Semantics, vol. 3, no. 2-3,
pp- 158-182, 2005.

J. D. Fernandez, J. Umbrich, A. Polleres, and M. Knuth, “Evaluating
query and storage strategies for RDF archives,” Semantic Web, vol. 10,
no. 2, pp. 247-291, 2019.

Z. Kaoudi and 1. Manolescu, “RDF in the clouds: a survey,” The VLDB
Journal, vol. 24, no. 1, pp. 67-91, 2015.

D. Graux, L. Jachiet, P. Geneves, and N. Layaida, “A multi-criteria
experimental ranking of distributed SPARQL evaluators,” in 20/8 IEEE
International Conference on Big Data (Big Data). 1EEE, 2018, pp.
693-702.

http://www.w3.org/TR/2006/NOTE-swbp-n-aryRelations-20060412/
http://ceur-ws.org/Vol-1457/
https://linkinghub.elsevier.com/retrieve/pii/S1570826805000235
https://linkinghub.elsevier.com/retrieve/pii/S1570826805000235

	Introduction
	Expressing statements of statements in RDF
	Standard Reification rdf
	Singleton Property singletonproperty
	RDF* rdfsparqlstarformalism

	Dataset Description
	Considered Queries
	Experiments
	Storage Size
	Query Execution Time
	Discussion

	Related Work
	Conclusion and Future Work
	References

