
Timelining Knowledge Graphs in the Browser

Damien Graux(B)1,2 , Fabrizio Orlandi(B)2 ,
Tanmay Kaushik2, David Kavanagh2, Hailing Jiang2, Brian Bredican2,

Matthew Grouse2, and Dáith́ı Geary2

1 Inria, Université Côte d’Azur, CNRS, I3S, France
2 ADAPT SFI Research Centre & Trinity College Dublin, Ireland

{grauxd,orlandif}@tcd.ie

Copyright © 2021 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

Abstract. Knowledge graphs, available on the Web via SPARQL end-
points, provide practitioners with various kinds of information from gen-
eral considerations to more specific ones such as temporal data. In this
article, we propose a light-weight solution to visually grasp, navigate
and compare, in a Web browser, temporal information available from
SPARQL endpoints. Furthermore, we use Wikidata’s public SPARQL
endpoint to demonstrate our solution and allow users to navigate Wiki-
data’s temporal information.

1 Introduction

Over the past two decades many data sources have been published on the Web.
Most of the time, they follow the recommendations and standards promoted by
the World Wide Web Consortium (W3C) within the Semantic Web movement,
driven by the desire to create a “Web of data” from the conventional “Web of
documents”. These datasets, generally represented thanks to the RDF format [9]
and accessible via the SPARQL language [12], deal with subjects ranging from
generalist knowledge such as DBpedia [8], YAGO [10] or Wikidata [11] to spe-
cific knowledge such as legal court cases [6], source codes [7] or medical infor-
mation [13]. Thus, the amount of semantic data now (publicly) accessible makes
it possible to create new applications combining for instance several datasets at
once. In addition, among the nowadays available datasets, several ones are open
online and offer public endpoints on which users may send queries.

To help users navigate this large amount of RDF information, data architects
rely on the use of ontologies to structure their datasets. Typically, they declare
how entities may be related to each other, for instance a person is of type hu-
man and should have parents who are also of type human1. More specifically,
any kind of type and or relation could be represented in RDF and thus serves
to structure knowledge. Among the various facets which might be represented,
one is often present in knowledge graphs: temporal information. These can take

1 See for example the friend-of-a-friend structure devoted to linking people and infor-
mation using the Web: http://xmlns.com/foaf/spec/

https://orcid.org/0000-0003-3392-3162
https://orcid.org/0000-0001-9561-4635
http://xmlns.com/foaf/spec/

various forms, from the representation of a specific point in time (i.e. a date) to
a time span. Practically, in RDF, dated information can correspond to a typed
date represented by a literal like so: "25/10/2021"^^xsd:date which means
that objects are the date-carriers2 and predicates express is the date is related
to a point in time, or to a starting date, etc. As a consequence, there is available
temporal information in most of the RDF knowledge graphs, however, having
access to it is not a trivial task as the RDF triple structure splits the information
across several statements.

In this article, we present an approach to gather, in a Web browser, temporal
information coming from SPARQL endpoints. We describe how our system relies
on SPARQL queries in order to retrieve the necessary information and how the
pipeline can be modified to adapt to other data sources. Visually, our solution
allows to present temporal information using timelines which are enriched with
additional features such as “click-&-follow” or “compare” nodes. Finally, to vali-
date our approach, we deploy our strategy on the Wikidata [11] public endpoint
and host it on a Github page at https://wikitimeline.github.io/.

2 Collection of temporal information

As introduced in the previous section, knowledge graphs are generally structured
using the RDF standard [9]. Technically it organises data in triple statements
composed of a subject, a predicate and an object. In addition to that, each element
is entitled to have a specific semantic role: the predicate can only be a Uniform
Resource Identifier (e.g. <http://purl.org/dc/terms/title>3) when an object can
also be a literal value such as "some description"@en tagged by the English
language. Therefore, if there are some temporally typed data existing in an RDF
dataset, it should be as a literal in an object field.

Associated with the RDF standard comes SPARQL [12]: its de facto query
language, standardised by the W3C too. SPARQL adopts an imperative SQL-
like syntax for fetching information together with graph-specific features and
a large set of functions specific to dealing with RDF data; for example, isIRI
checks whether the mapped value behind a variable is a URI or not, and it can
be used to test a variable having an object role in the graph. . .

As a consequence, using exclusively SPARQL (standard) queries, we can filter
the graphs in order to retrieve temporally typed/tagged information together
with their related context (close-triples). For example in:

SELECT * WHERE {

?s ?p ?o . FILTER (isLiteral(?o))

FILTER (DATATYPE(?o) = <http://www.w3.org/2001/XMLSchema#date>)

}

The query will run through the entire RDF default graph (pattern ?s ?p ?o) and
returns the triple if the object ?o is a literal and if it is a date <..Schema#date>.

2 As only objects can be literal in RDF [9].
3 URIs are dereferenceable and could thereby be mapped to a resource.

https://wikitimeline.github.io/
http://purl.org/dc/terms/title

In the context of more complex / richer knowledge graphs, we apply a similar
strategy following the dataset ontology in order to know how (and where) the
dates or the temporal information are stored.

3 Timelines in the Web browser

In order to be able to visualise temporal information from triple endpoints, we
devised a twofold architecture. First, we design a way to render such information
visually and thus decide to represent time spans using timelines. In particular, we
choose to rely on the timelines-chart library4 to draw and navigate through tem-
poral information. Practically, the solution is implemented using basic JavaScript
and does not require the use of heavy external libraries. Second, to fetch the nec-
essary data needed by the visualiser, we write SPARQL queries to be sent to the
chosen endpoint where the RDF triples are stored. These queries are in charge
of filtering the graphs to extract only the “interesting” parts together with the
temporal information.

3.1 Adaptability with SPARQL

For adaptability purposes, we design our approach so that changing the accessed
SPARQL endpoint (and thus the RDF graphs queried) does not imply a complete
redevelopment of our tool. Indeed, to change the considered knowledge graph,
one should modify (1) the address of the endpoint and (2) the queries used.
If the first step is straightforward, the second may still lead to some simple
query rewriting. To limit this effort, we compact the queries so that all the
necessary fields are retrieved with two queries. More generally, these two queries
should return the following elements to guarantee that the visualiser can properly
process the data:

Q1: SELECT ?pred ?obj ?pName – to find all dates (?obj) and their relation-
ships (?pred & ?pName) related to a specified subject;

Q2: SELECT ?pred ?pName ?obj ?oName ?start ?end – to find start & end
dates metadata about statements (?sub ?pred ?obj) on a specified subject.

Such a uniform query output structure allows therefore the practitioners to
change the content of the query as much as they want. For instance, on Wiki-
data [11], and considering the “qualifiers”5 i.e. the way Wikidata represents
statements of statements, Q2 would be as follows:

SELECT ?pred ?pName ?obj ?oName ?start ?end WHERE {
?subj ?pred ?statement. ?statement ?predPS ?obj.
?statement pq:P580 ?start.
OPTIONAL { ?statement pq:P582 ?end. FILTER(?end >= ?start).}
FILTER(STRSTARTS(STR(?predPS), "http://www.wikidata.org/prop/statement/"))
FILTER(STRSTARTS(STR(?pred), "http://www.wikidata.org/prop/"))
FILTER(STRSTARTS(STR(?statement), "http://www.wikidata.org/entity/statement/"))
?x wikibase:claim ?pred. ?x rdfs:label ?pName.

4 https://github.com/vasturiano/timelines-chart (built on D3.js)
5 https://www.wikidata.org/wiki/Help:Qualifiers

https://github.com/vasturiano/timelines-chart
https://www.wikidata.org/wiki/Help:Qualifiers

?obj rdfs:label ?oName.
FILTER((LANG(?pName)) = "en"). FILTER((LANG(?oName)) = "en").
}

However, on YAGO4 [10], considering that RDF-star [5] is used to reify triples,
Q2 would be:

SELECT ?pred ?pName ?obj ?oName ?start ?end WHERE {
<< ?subj ?pred ?obj >> <http://schema.org/startDate> ?start .
OPTIONAL{ << ?subj ?pred ?obj >> <http://schema.org/endDate> ?end .}
?pred rdfs:label ?pName .
?obj rdfs:label ?oName . FILTER(LANG(?oName)='en').
}

Hence, our solution can be deployed on any endpoint as long as the involved
queries are answering the same structures.

3.2 Visual Features

From the graphical point-of-view, we develop several features to enrich the users’
experience. Practically, timelines are representing temporal information related
to one single entity (usually a subject in RDF). As the number of elements
describing a specific entity can be large and since time can span over decades
for some entity (such as states for instance), the interface enables users to zoom
on a particular period of time in order to “restrict” the window-view, using a
click-and-drag movement. Similarly, to help users distinguishing similar kinds of
information, we group the same predicates by color. Additionally, more details
can be read when the users hover above a time-bar displaying the exact starting
and ending dates of it. Furthermore, in order to “navigate within” the endpoint’s
RDF graph, we set up a click-and-follow mechanism on the time-bars. Actually,
clicking on time-bar redirects the users on the timeline corresponding to the
entity the initial bar was about. Such a mechanism allows a seamless experience
for the user who can explore the available temporal elements from one entity
to another. Finally, we implemented a specific compare feature to allow users
comparing two entities at once by grouping the two timelines together.

3.3 Practical use-case: Wikidata timelines

In order to validate our approach, we tested the system using the available
Wikidata SPARQL endpoint. To do so, we designed the necessary SPARQL
queries and hosted our interface online. Typically, a comparison between two
entities is shown in Figure 1 where the timelines of Presidents George W. Bush
and Barack Obama are displayed. In addition, for this online interface, we added
an auto-completion feature to fasten the search of any entity as Wikidata uses
exotic names e.g. B. Obama is “Q76”. Finally, following on the dereferenceable
principle, we also enable URL access to let user share timelines, for example Tim
Berners-Lee’s timeline is available from: https://wikitimeline.github.io/search.
html?subj=http://www.wikidata.org/entity/Q80.

https://wikitimeline.github.io/search.html?subj=http://www.wikidata.org/entity/Q80
https://wikitimeline.github.io/search.html?subj=http://www.wikidata.org/entity/Q80

Fig. 1. Comparing George W. Bush and Barack Obama. See these timelines

4 Related Work

To the best of our knowledge, the literature does not contain solutions focusing
exclusively on “timelining” temporal information contained in KGs. Neverthe-
less, timeline representations have already been used within larger platforms as
a side-tool such as Metaphactory [4]. Similarly, rdf:SynopsViz [1] has a ded-
icated tab to draw timeline from date properties available in RDF datasets;
however, the platform needs to prior ingest the dataset, whereas our solution
relies on SPARQL endpoints. Recently, Gottschalk et al. [2,3] formalised the no-
tion of temporal knowledge graph and instantiated it using several bases such
as YAGO or Wikidata. Regarding the visualisation, the difference with our ap-
proach is that they created their own KG, based on their own schema, therefore
the visualisations need to be updated when original datasets change.

5 Conclusion

The proposed web-app visualises and compares Wikidata entities according to
their temporal information. A demonstrator is hosted on:

https://wikitimeline.github.io/
under an MIT license6, providing users a live example of what the application
could be locally, would someone be interested in deploying the interfaces at
their premises. Further, the presented architecture can be easily deployed on
alternative SPARQL endpoints by only changing the queries (which retrieve
temporal data) as long as their results are structured similarly.

We presented in this article the first version of our interface focused on repre-
senting Wikidat’s temporal information using timelines. Practically, we are cur-

6 Project’s code base: https://github.com/wikitimeline/wikitimeline.github.io

https://wikitimeline.github.io/compare.html?subj=http://www.wikidata.org/entity/Q207&subj2=http://www.wikidata.org/entity/Q76
https://wikitimeline.github.io/
https://github.com/wikitimeline/wikitimeline.github.io

rently setting up a user validation experiment in order to improve the timeline
navigation and experience. On a different note, we are also planning to improve
the WebApp-side with additional features such as: allowing timeline exports as
image or improving the coloring to for instance group predicate together. Fi-
nally, it is worth noticing that our architecture is not bound to querying a single
endpoint at once; indeed, it is possible to extend the compare feature presented
above to query two or more SPARQL endpoints, allowing a comparison of the
temporal information available in different databases at a glance.

Acknowledgments This research was conducted with the financial support
of the EU Horizon 2020 research and innovation programme under the Marie
Sk lodowska-Curie Grant Agreement No. 713567 at the ADAPT SFI Research
Centre at Trinity College Dublin. The ADAPT SFI Centre is funded by Science
Foundation Ireland through the SFI Research Centres Programme and co-funded
under the European Regional Development Fund Grant #13/RC/2106.

References

1. Bikakis, N., Skourla, M., Papastefanatos, G.: rdf:synopsviz – A framework for
hierarchical linked data visual exploration and analysis. In: European Semantic
Web Conference. pp. 292–297. Springer (2014)

2. Gottschalk, S., Demidova, E.: EventKG: A multilingual event-centric temporal
knowledge graph. In: ESWC. pp. 272–287. Springer (2018)

3. Gottschalk, S., Demidova, E.: EventKG–the hub of event knowledge on the web–
and biographical timeline generation. Semantic Web 10(6), 1039–1070 (2019)

4. Haase, P., Herzig, D.M., Kozlov, A., Nikolov, A., Trame, J.: metaphactory: A
platform for knowledge graph management. Semantic Web 10(6), 1109–1125 (2019)

5. Hartig, O.: Foundations of RDF* and SPARQL*:(An alternative approach to
statement-level metadata in RDF). In: AMW 2017 11th Int. Workshop on Foun-
dations of Data Management and the Web. vol. 1912 (2017)

6. Junior, A.C., Orlandi, F., Graux, D., Hossari, M., O’Sullivan, D., Hartz, C., Dirschl,
C.: Knowledge graph-based legal search over german court cases. In: ESWC (2020)

7. Kubitza, D.O., Böckmann, M., Graux, D.: Semangit: A linked dataset from git.
In: International Semantic Web Conference. pp. 215–228. Springer (2019)

8. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N.,
Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia - a large-scale,
multilingual knowledge base extracted from wikipedia. Semantic Web Journal 6(2),
167–195 (2015)

9. Manola, F., Miller, E., McBride, B., et al.: RDF primer. W3C recommendation
10(1-107), 6 (2004)

10. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: A core of semantic knowledge.
In: WWW. pp. 697–706. ACM, New York, NY, USA (2007)

11. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Com-
munications of the ACM 57(10), 78–85 (2014)

12. W3C SPARQL Working Group, et al.: SPARQL 1.1 overview (2013),
http://www.w3.org/TR/sparql11-overview/

13. Wishart, D.S., Knox, C., Guo, A.C., Cheng, D., Shrivastava, S., Tzur, D., Gautam,
B., Hassanali, M.: Drugbank: a knowledgebase for drugs, drug actions and drug
targets. Nucleic acids research 36(suppl 1), D901–D906 (2008)

	Timelining Knowledge Graphs in the Browser

